Genome-wide identification and molecular evolution of Dof gene family in Camellia oleifera

Author:

Fu Chun,Xiao YuJie,Jiang Na,Yang YaoJun

Abstract

AbstractDNA binding with one finger(Dof) gene family is a class of transcription factors which play an important role on plant growth and development. Genome-wide identification results indicated that there were 45 Dof genes(ColDof) in C.oleifera genome. All 45 ColDof proteins were non-transmembrane and non-secretory proteins. Phosphorylation site analysis showed that biological function of ColDof proteins were mainly realized by phosphorylation at serine (Ser) site. The secondary structure of 44 ColDof proteins was dominated by random coil, and only one ColDof protein was dominated by α-helix. ColDof genes’ promoter region contained a variety of cis-acting elements, including light responsive regulators, gibberellin responsive regulators, abscisic acid responsive regulators, auxin responsive regulators and drought induction responsive regulators. The SSR sites analysis showed that the proportion of single nucleotide repeats and the frequency of A/T in ColDof genes were the largest. Non-coding RNA analysis showed that 45 ColDof genes contained 232 miRNAs. Transcription factor binding sites of ColDof genes showed that ColDof genes had 5793 ERF binding sites, 4381 Dof binding sites, 2206 MYB binding sites, 3702 BCR-BPC binding sites. ColDof9, ColDof39 and ColDof44 were expected to have the most TFBSs. The collinearity analysis showed that there were 40 colinear locis between ColDof proteins and AtDof proteins. Phylogenetic analysis showed that ColDof gene family was most closely related to that of Camellia sinensis var. sinensis cv.Biyun and Camellia lanceoleosa. Protein-protein interaction analysis showed that ColDof34, ColDof20, ColDof28, ColDof35, ColDof42 and ColDof26 had the most protein interactions. The transcriptome analysis of C. oleifera seeds showed that 21 ColDof genes were involved in the growth and development process of C. oleifera seeds, and were expressed in 221 C. oleifera varieties. The results of qRT-PCR experiments treated with different concentrations NaCl and PEG6000 solutions indicated that ColDof1, ColDof2, ColDof14 and ColDof36 not only had significant molecular mechanisms for salt stress tolerance, but also significant molecular functions for drought stress tolerance in C. oleifera. The results of this study provide a reference for further understanding of the function of ColDof genes in C.oleifera.

Funder

Science and Technology Program of Leshan Normal University

Opening Foundation of Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3