Efficiently localizing system anomalies for cloud infrastructures: a novel Dynamic Graph Transformer based Parallel Framework

Author:

He Hongxia,Li Xi,Chen Peng,Chen Juan,Liu Ming,Wu Lei

Abstract

AbstractCloud environment is a virtual, online, and distributed computing environment that provides users with large-scale services. And cloud monitoring plays an integral role in protecting infrastructures in the cloud environment. Cloud monitoring systems need to closely monitor various KPIs of cloud resources, to accurately detect anomalies. However, due to the complexity and highly dynamic nature of the cloud environment, anomaly detection for these KPIs with various patterns and data quality is a huge challenge, especially those massive unlabeled data. Besides, it’s also difficult to improve the accuracy of the existing anomaly detection methods. To solve these problems, we propose a novel Dynamic Graph Transformer based Parallel Framework (DGT-PF) for efficiently detect system anomalies in cloud infrastructures, which utilizes Transformer with anomaly attention mechanism and Graph Neural Network (GNN) to learn the spatio-temporal features of KPIs to improve the accuracy and timeliness of model anomaly detection. Specifically, we propose an effective dynamic relationship embedding strategy to dynamically learn spatio-temporal features and adaptively generate adjacency matrices, and soft cluster each GNN layer through Diffpooling module. In addition, we also use nonlinear neural network model and AR-MLP model in parallel to obtain better detection accuracy and improve detection performance. The experiment shows that the DGT-PF framework have achieved the highest F1-Score on 5 public datasets, with an average improvement of 21.6% compared to 11 anomaly detection models.

Funder

the National Natural Science Foundation under Grant

Science and Technology Program of Sichuan Province under Grant

Publisher

Springer Science and Business Media LLC

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3