Collaborative on-demand dynamic deployment via deep reinforcement learning for IoV service in multi edge clouds

Author:

Huang Yuze,Feng Beipeng,Cao Yuhui,Guo Zhenzhen,Zhang Miao,Zheng Boren

Abstract

AbstractIn vehicular edge computing, the low-delay services are invoked by the vehicles from the edge clouds while the vehicles moving on the roads. Because of the insufficiency of computing capacity and storage resource for edge clouds, a single edge cloud cannot handle all the services, and thus the efficient service deployment strategy in multi edge clouds should be designed according to the service demands. Noticed that the service demands are dynamic in temporal, and the inter-relationship between services is a non-negligible factor for service deployment. In order to address the new challenges produced by these factors, a collaborative service on-demand dynamic deployment approach with deep reinforcement learning is proposed, which is named CODD-DQN. In our approach, the number of service request of each edge clouds are forecasted by a time-aware service demands prediction algorithm, and then the interacting services are discovered through the analysis of service invoking logs. On this basis, the service response time models are constructed to formulated the problem, aiming to minimize service response time with data transmission delay between services. Furthermore, a collaborative service dynamic deployment algorithm with DQN model is proposed to deploy the interacting services. Finally, the real-world dataset based experiments are conducted. The results show our approach can achieve lowest service response time than other algorithms for service deployment.

Funder

Natural Science Foundation of Chongqing, China

Young Project of Science and Technology Research Program of Chongqing Education Commission of China

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3