Enhancing Sustainable Transportation Infrastructure Management: A High-Accuracy, FPGA-Based System for Emergency Vehicle Classification

Author:

Mani Pemila1,Komarasamy Pongiannan Rakkiya Goundar2ORCID,Rajamanickam Narayanamoorthi1ORCID,Shorfuzzaman Mohammad3ORCID,Abdelfattah Waleed Mohammed4ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India

2. Department of Computing Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India

3. Department of Computer Science, College of Computers and Information Technology, Taif University, Taif 21944, Saudi Arabia

4. General Subject Department, University of Business and Technology, Jeddah 23435, Saudi Arabia

Abstract

Traffic congestion is a prevalent problem in modern civilizations worldwide, affecting both large cities and smaller communities. Emergency vehicles tend to group tightly together in these crowded scenarios, often masking one another. For traffic surveillance systems tasked with maintaining order and executing laws, this poses serious difficulties. Recent developments in machine learning for image processing have significantly increased the accuracy and effectiveness of emergency vehicle classification (EVC) systems, especially when combined with specialized hardware accelerators. The widespread use of these technologies in safety and traffic management applications has led to more sustainable transportation infrastructure management. Vehicle classification has traditionally been carried out manually by specialists, which is a laborious and subjective procedure that depends largely on the expertise that is available. Furthermore, erroneous EVC might result in major problems with operation, highlighting the necessity for a more dependable, precise, and effective method of classifying vehicles. Although image processing for EVC involves a variety of machine learning techniques, the process is still labor intensive and time consuming because the techniques now in use frequently fail to appropriately capture each type of vehicle. In order to improve the sustainability of transportation infrastructure management, this article places a strong emphasis on the creation of a hardware system that is reliable and accurate for identifying emergency vehicles in intricate contexts. The ResNet50 model’s features are extracted by the suggested system utilizing a Field Programmable Gate Array (FPGA) and then optimized by a multi-objective genetic algorithm (MOGA). A CatBoost (CB) classifier is used to categorize automobiles based on these features. Overtaking the previous state-of-the-art accuracy of 98%, the ResNet50-MOP-CB network achieved a classification accuracy of 99.87% for four primary categories of emergency vehicles. In tests conducted on tablets, laptops, and smartphones, it demonstrated excellent accuracy, fast classification times, and robustness for real-world applications. On average, it took 0.9 nanoseconds for every image to be classified with a 96.65% accuracy rate.

Funder

Taif University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3