Abstract
AbstractThe growth of the Internet of things (IoT) has ushered in a new area of inter-connectivity and innovation in the home. Many devices, once separate, can now be interacted with remotely, improving efficiency and organization. This, however, comes at the cost of rising security vulnerabilities. Vendors are competing to create and release quickly innovative connected objects, without focusing on the security issues. As a consequence, attacks involving smart devices, or targeting them, are proliferating, creating threats to user’s privacy and even their physical security. Additionally, the heterogeneous technologies involved in IoT make attempts to develop protection on smart devices much harder. Most of the intrusion detection systems developed for those platforms are based on network activity. However, on many systems, intrusions cannot easily or reliably be detected from network traces. We propose a novel host-based automated framework for intrusion detection. Our work combines user space and kernel space information and machine learning techniques to detect various kinds of intrusions in smart devices. Our solution use tracing techniques to automatically get devices behavior, process this data into numeric arrays to train several machine learning algorithms, and raise alerts whenever an intrusion is found. We implemented several machine learning algorithms, including deep learning ones, to achieve high detection capabilities, while adding little overhead on the monitored devices. We tested our solution within a realistic home automation system with actual threats.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Software
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献