Insights into Modern Intrusion Detection Strategies for Internet of Things Ecosystems

Author:

Isong Bassey1ORCID,Kgote Otshepeng1ORCID,Abu-Mahfouz Adnan2

Affiliation:

1. Computer Science Department, North-West University, Mafikeng 2790, South Africa

2. Council of Scientific and Industrial Research (CSIR), Pretoria 0184, South Africa

Abstract

The swift explosion of Internet of Things (IoT) devices has brought about a new era of interconnectivity and ease of use while simultaneously presenting significant security concerns. Intrusion Detection Systems (IDS) play a critical role in the protection of IoT ecosystems against a wide range of cyber threats. Despite research advancements, challenges persist in improving IDS detection accuracy, reducing false positives (FPs), and identifying new types of attacks. This paper presents a comprehensive analysis of recent developments in IoT, shedding light on detection methodologies, threat types, performance metrics, datasets, challenges, and future directions. We systematically analyze the existing literature from 2016 to 2023, focusing on both machine learning (ML) and non-ML IDS strategies involving signature, anomaly, specification, and hybrid models to counteract IoT-specific threats. The findings include the deployment models from edge to cloud computing and evaluating IDS performance based on measures such as accuracy, FP rates, and computational costs, utilizing various IoT benchmark datasets. The study also explores methods to enhance IDS accuracy and efficiency, including feature engineering, optimization, and cutting-edge solutions such as cryptographic and blockchain technologies. Equally, it identifies key challenges such as the resource-constrained nature of IoT devices, scalability, and privacy issues and proposes future research directions to enhance IoT-based IDS and overall ecosystem security.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3