Author:
Chen Haiming,Qin Wei,Wang Lei
Abstract
AbstractInternet of Things (IoT) is made up with growing number of facilities, which are digitalized to have sensing, networking and computing capabilities. Traditionally, the large volume of data generated by the IoT devices are processed in a centralized cloud computing model. However, it is no longer able to meet the computational demands of large-scale and geographically distributed IoT devices for executing tasks of high performance, low latency, and low energy consumption. Therefore, edge computing has emerged as a complement of cloud computing. To improve system performance, it is necessary to partition and offload some tasks generated by local devices to the remote cloud or edge nodes. However, most of the current research work focuses on designing efficient offloading strategies and service orchestration. Little attention has been paid to the problem of jointly optimizing task partitioning and offloading for different application types. In this paper, we make a comprehensive overview on the existing task partitioning and offloading frameworks, focusing on the input and core of decision engine of the framework for task partitioning and offloading. We also propose comprehensive taxonomy metrics for comparing task partitioning and offloading approaches in the IoT cloud-edge collaborative computing framework. Finally, we discuss the problems and challenges that may be encountered in the future.
Funder
The Natural Science Foundation of Ningbo City
Ningbo Manicipal Commonweal S&T Project
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Software
Reference71 articles.
1. Patel M, Naughton B, Chan C, Sprecher N, Abeta S, Neal A (2014) Mobile-edge computing introductory technical white paper. White paper, mobile-edge computing (MEC) industry initiative 29:854–864
2. Hu YC, Patel M, Sabella D, Sprecher N, Young V (2015) Mobile edge computing-a key technology towards 5g. ETSI white paper 11(11):1–16
3. Abbas N, Zhang Y, Taherkordi A, Skeie T (2018) Mobile edge computing: A survey. IEEE Internet Things J 5(1):450–465
4. Shi W, Zhang X, Wang Y, Zhang Q (2019) Edge computing: state-of-the-art and future directions. Journal of Computer Research and Development 56(1):73–93
5. Lai P, He Q, Cui G, Xia X, Abdelrazek M, Chen F, Hosking J, Grundy J, Yang Y (2020) QoE-aware user allocation in edge computing systems with dynamic QoS. Futur Gener Comput Syst 112:684–694
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献