Edge-cloud computing oriented large-scale online music education mechanism driven by neural networks

Author:

Xing Wen,Slowik Adam,Peter J. Dinesh

Abstract

AbstractWith the advent of the big data era, edge cloud computing has developed rapidly. In this era of popular digital music, various technologies have brought great convenience to online music education. But vast databases of digital music prevent educators from making specific-purpose choices. Music recommendation will be a potential development direction for online music education. In this paper, we propose a deep learning model based on multi-source information fusion for music recommendation under the scenario of edge-cloud computing. First, we use the music latent factor vector obtained by the Weighted Matrix Factorization (WMF) algorithm as the ground truth. Second, we build a neural network model to fuse multiple sources of music information, including music spectrum extracted from extra music information to predict the latent spatial features of music. Finally, we predict the user’s preference for music through the inner product of the user vector and the music vector for recommendation. Experimental results on public datasets and real music data collected by edge devices demonstrate the effectiveness of the proposed method in music recommendation.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3