Robust-PAC time-critical workflow offloading in edge-to-cloud continuum among heterogeneous resources

Author:

Liu Hongyun,Xin Ruyue,Chen Peng,Gao Hui,Grosso Paola,Zhao Zhiming

Abstract

AbstractEdge-to-cloud continuum connects and extends the calculation from edge side via network to cloud platforms, where diverse workflows go back and forth, getting executed on scheduled calculation resources. To better utilize the calculation resources from all sides, workflow offloading problems have been investigating lately. Most works focus on optimizing constraints like: latency requirements, resource utilization rate limits, and energy consumption bounds. However, the dynamics among the offloading environment have hardly been researched, which easily results in uncertain Quality of Service(QoS) on the user side. Any part of the workload change, resource availability change or network latency could incur dynamics in an offloading environment. In this work, we propose a robust PAC (probably approximately correct) offloading algorithm to address this dynamic issue together with optimization. We train an LSTM-based sequence-to-sequence neural network to learn how to offload workflows in edge-to-cloud continuum. Comprehensive implementations and corresponding comparison against state-of-the-art methods demonstrate the robustness of our proposed algorithm. More specifically, our algorithm achieves better offloading performance regarding dynamic heterogeneous offloading environment and faster adaptation to newly changed environments than fine-tuned state-of-the-art RL-based offloading methods.

Funder

Horizon 2020

LifeWatch ERIC

the Natural Science Foundation of Shaanxi

China Scholarship Council

Sichuan Province Science and Technology Support Program

Talent Program of Xihua University

Bluecloud2026

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3