Dynamic resource provisioning and secured file sharing using virtualization in cloud azure

Author:

Perumal Kumaresan,Mohan Senthilkumar,Frnda Jaroslav,Divakarachari Parameshachari Bidare

Abstract

AbstractVirtual machines (VMs) are preferred by the majority of organizations due to their high performance. VMs allow for reduced overhead with multiple systems running from the same console at the same time. A physical server is a bare-metal system whose hardware is controlled by the host operating system. A physical server runs on a single instance of OS and application. A virtual server or virtual machine encapsulates the underlying hardware and networking resources. With the existing physical server, it is difficult to migrate the tasks from one platform to another platform or to a datacentre. Centralized security is difficult to setup. But with Hypervisor the virtual machine can be deployed, for instance, with automation. Virtualization cost increases as well as a decrease in hardware and infrastructure space costs. We propose an efficient Azure cloud framework for the utilization of physical server resources at remote VM servers. The proposed framework is implemented in two phases first by integrating physical servers into virtual ones by creating virtual machines, and then by integrating virtual servers into cloud service providers in a cost-effective manner. We create a virtual network in the Azure datacenter using the local host physical server to set up the various virtual machines. Two virtual machine instances, VM1 and VM2, are created using Microsoft Hyper-V with the server Windows 2016 R. The desktop application is deployed and VM performance is monitored using the PowerShell script. Tableau is used to evaluate the physical server functionality of the worksheet for the deployed application.The proposed Physical to Virtual to Cloud model (P2V2C) model is being tested, and the performance result shows that P2V2C migration is more successful in dynamic provisioning than direct migration to cloud platform infrastructure. The research work was carried out in a secure way through the migration process from P2V2C.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HRMF-DRP: A next-generation solution for overcoming provisioning challenges in cloud environments;Journal of Network and Computer Applications;2024-11

2. Automatic Discovery Technology for Full Business Scenario Links in Cloud Environment;2023 International Conference on Computer Science and Automation Technology (CSAT);2023-10-06

3. Simcan2Cloud: a discrete-event-based simulator for modelling and simulating cloud computing infrastructures;Journal of Cloud Computing;2023-09-18

4. FECNet: a Neural Network and a Mobile App for COVID-19 Recognition;Mobile Networks and Applications;2023-07-17

5. An Intelligent Camera Based Eye Controlled Wheelchair System: Haar Cascade and Gaze Estimation Algorithms;2023 International Conference on Applied Intelligence and Sustainable Computing (ICAISC);2023-06-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3