Simcan2Cloud: a discrete-event-based simulator for modelling and simulating cloud computing infrastructures

Author:

Cañizares Pablo C.,Núñez Alberto,Bernal Adrián,Cambronero M. Emilia,Barker Adam

Abstract

AbstractCloud computing is an evolving paradigm whose adoption has been increasing over the last few years. This fact has led to the growth of the cloud computing market, together with fierce competition for the leading market share, with an increase in the number of cloud service providers. Novel techniques are continuously being proposed to increase the cloud service provider’s profitability. However, only those techniques that are proven not to hinder the service agreements are considered for production clouds. Analysing the expected behaviour and performance of the cloud infrastructure is challenging, as the repeatability and reproducibility of experiments on these systems are made difficult by the large number of users concurrently accessing the infrastructure. To this, must be added the complications of using different provisioning policies, managing several workloads, and applying different resource configurations. Therefore, in order to alleviate these issues, we present Simcan2Cloud, a discrete-event-based simulator for modelling and simulating cloud computing environments. Simcan2Cloud focuses on modelling and simulating the behaviour of the cloud provider with a high level of detail, where both the cloud infrastructure and the interactions of the users with the cloud are integrated in the simulated scenarios. For this purpose, Simcan2Cloud supports different resource allocation policies, service level agreements (SLAs), and an intuitive and complete API for including new management policies. Finally, a thorough experimental study to measure the suitability and applicability of Simcan2Cloud, using both real-world traces and synthetic workloads, is presented.

Funder

MINECO/FEDER

Comunidad de Madrid

Comunidad de Madrid - Universidad Complutense

University of Castilla-La Mancha

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3