The Regulatory Network of Pseudomonas aeruginosa
-
Published:2011-06-14
Issue:1
Volume:1
Page:
-
ISSN:2042-5783
-
Container-title:Microbial Informatics and Experimentation
-
language:en
-
Short-container-title:Microb Informatics Exp
Author:
Galán-Vásquez Edgardo,Luna Beatriz,Martínez-Antonio Agustino
Abstract
Abstract
Background
Pseudomonas aeruginosa is an important bacterial model due to its metabolic and pathogenic abilities, which allow it to interact and colonize a wide range of hosts, including plants and animals. In this work we compile and analyze the structure and organization of an experimentally supported regulatory network in this bacterium.
Results
The regulatory network consists of 690 genes and 1020 regulatory interactions between their products (12% of total genes: 54% sigma and 16% of transcription factors). This complex interplay makes the third largest regulatory network of those reported in bacteria. The entire network is enriched for activating interactions and, peculiarly, self-activation seems to occur more prominent for transcription factors (TFs), which contrasts with other biological networks where self-repression is dominant. The network contains a giant component of 650 genes organized into 11 hierarchies, encompassing important biological processes, such as, biofilms formation, production of exopolysaccharide alginate and several virulence factors, and of the so-called quorum sensing regulons.
Conclusions
The study of gene regulation in P. aeruginosa is biased towards pathogenesis and virulence processes, all of which are interconnected. The network shows power-law distribution -input degree -, and we identified the top ten global regulators, six two-element cycles, the longest paths have ten steps, six biological modules and the main motifs containing three and four elements. We think this work can provide insights for the design of further studies to cover the many gaps in knowledge of this important bacterial model, and for the design of systems strategies to combat this bacterium.
Publisher
Springer Science and Business Media LLC
Reference28 articles.
1. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV: Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000, 406: 959-964. 10.1038/35023079. 2. Klein J, Leupold S, Münch R, Pommerenke C, Johl T, Kärst U, Jänsch L, Jahn D, Retter I: ProdoNet: identification and visualization of prokaryotic gene regulatory and metabolic networks. Nucleic Acids Res. 2008, 36: W460-W464. 10.1093/nar/gkn217. 3. Choi C, Münch R, Leupold S, Klein J, Siegel I, Thielen B, Benkert B, Kucklick M, Schobert M, Barthelmes J, Ebeling C, Haddad I, Scheer M, Grote A, Hiller K, Bunk B, Schreiber K, Retter I, Schomburg D, Jahn D: SYSTOMONAS- an integrated database for systems biology analysis of Pseudomonas. Nucleic Acids Res. 2007, 35: D533-D537. 10.1093/nar/gkl823. 4. Winsor G, Van T, Lo R, Bhavjinder K, Whiteside M, Hancock R, Brinkman S: Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes. Nucleic Acids Res. 2009, 37: D483-D488. 10.1093/nar/gkn861. 5. Perez-Rueda E, Janga SC, Martinez-Antonio A: Scaling relationship on the gene content of transcriptional machinery in bacteria. Mol. BioSyst. 2009, 12: 494-501.
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|