Frequency of quorum-sensing mutations in Pseudomonas aeruginosa strains isolated from different environments

Author:

O’Connor Kathleen1,Zhao Conan Y.1,Mei Madeline1,Diggle Stephen P.1ORCID

Affiliation:

1. Center for Microbial Dynamics & Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

Pseudomonas aeruginosa uses quorum sensing (QS) to coordinate the expression of multiple genes necessary for establishing and maintaining infection. It has previously been shown that lasR QS mutations frequently arise in cystic fibrosis (CF) lung infections, however, there has been far less emphasis on determining whether other QS system mutations arise during infection or in other environments. To test this, we utilized 852 publicly available sequenced P. aeruginosa genomes from the Pseudomonas International Consortium Database (IPCD) to study P. aeruginosa QS mutational signatures. To study isolates by source, we focused on a subset of 654 isolates collected from CF, wounds, and non-infection environmental isolates, where we could clearly identify their source. We also worked with a small collection of isolates in vitro to determine the impact of lasR and pqs mutations on isolate phenotypes. We found that lasR mutations are common across all environments and are not specific to infection nor a particular infection type. We also found that the pqs system proteins PqsA, PqsH, PqsL and MexT, a protein of increasing importance to the QS field, are highly variable. Conversely, RsaL, a negative transcriptional regulator of the las system, was found to be highly conserved, suggesting selective pressure to repress las system activity. Overall, our findings suggest that QS mutations in P. aeruginosa are common and not limited to the las system; however, LasR is unique in the frequency of putative loss-of-function mutations.

Funder

Division of Intramural Research, National Institute of Allergy and Infectious Diseases

Cystic Fibrosis Foundation

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3