Surface pretreatment for prolonged survival of cemented tibial prosthesis components: full- vs. surface-cementation technique

Author:

Marx Rudolf,Qunaibi Mutaz,Wirtz Dieter Christian,Niethard Fritz Uwe,Mumme Thorsten

Abstract

Abstract Background One of few persisting problems of cemented total knee arthroplasty (TKA) is aseptic loosening of tibial component due to degradation of the interface between bone cement and metallic tibial shaft component, particularly for surface cemented tibial components. Surface cementation technique has important clinical meaning in case of revision and for avoidance of stress shielding. Degradation of the interface between bone cement and bone may be a secondary effect due to excessive crack formation in bone cement starting at the opposite metallic surface. Methods This study was done to prove crack formation in the bone cement near the metallic surface when this is not coated. We propose a newly developed coating process by PVD layering with SiOx to avoid that crack formation in the bone cement. A biomechanical model for vibration fatigue test was done to simulate the physiological and biomechanical conditions of the human knee joint and to prove excessive crack formation. Results It was found that coated tibial components showed a highly significant reduction of cement cracking near the interface metal/bone cement (p < 0.01) and a significant reduction of gap formation in the interface metal-to-bone cement (p < 0.05). Conclusion Coating dramatically reduces hydrolytic- and stress-related crack formation at the prosthesis interface metal/bone cement. This leads to a more homogenous load transfer into the cement mantle which should reduce the frequency of loosening in the interfaces metal/bone cement/bone. With surface coating of the tibial component it should become possible that surface cemented TKAs reveal similar loosening rates as TKAs both surface and stem cemented. This would be an important clinical advantage since it is believed that surface cementing reduces metaphyseal bone loss in case of revision and stress shielding for better bone health.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3