Author:
Marx Rudolf,Qunaibi Mutaz,Wirtz Dieter Christian,Niethard Fritz Uwe,Mumme Thorsten
Abstract
Abstract
Background
One of few persisting problems of cemented total knee arthroplasty (TKA) is aseptic loosening of tibial component due to degradation of the interface between bone cement and metallic tibial shaft component, particularly for surface cemented tibial components. Surface cementation technique has important clinical meaning in case of revision and for avoidance of stress shielding. Degradation of the interface between bone cement and bone may be a secondary effect due to excessive crack formation in bone cement starting at the opposite metallic surface.
Methods
This study was done to prove crack formation in the bone cement near the metallic surface when this is not coated. We propose a newly developed coating process by PVD layering with SiOx to avoid that crack formation in the bone cement. A biomechanical model for vibration fatigue test was done to simulate the physiological and biomechanical conditions of the human knee joint and to prove excessive crack formation.
Results
It was found that coated tibial components showed a highly significant reduction of cement cracking near the interface metal/bone cement (p < 0.01) and a significant reduction of gap formation in the interface metal-to-bone cement (p < 0.05).
Conclusion
Coating dramatically reduces hydrolytic- and stress-related crack formation at the prosthesis interface metal/bone cement. This leads to a more homogenous load transfer into the cement mantle which should reduce the frequency of loosening in the interfaces metal/bone cement/bone. With surface coating of the tibial component it should become possible that surface cemented TKAs reveal similar loosening rates as TKAs both surface and stem cemented. This would be an important clinical advantage since it is believed that surface cementing reduces metaphyseal bone loss in case of revision and stress shielding for better bone health.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Reference28 articles.
1. Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM: Why Are Total Knee Arthroplasties Failing Today? Clin Orthop 2002, 404: 7–13.
2. Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM: Why Are Total Knee Arthroplasties Failing Today? John Insall Award. Program and abstracts of the Combined Speciality Day meeting of the AAHKS. Dallas, Texas;
3. Austin MS, Sharkey PF, Hozack WJ, Rothman RH: Knee Failure Mechanisms After Total Knee Arthroplasty. Techniques in Knee Surgery 2004, 3: 55–59. 10.1097/00132588-200403000-00008
4. Gonzalez MH, Mekhail AO: The Failed Total Knee Arthroplasty: Evaluation and Etiology. J Am Acad Orthop Surg 2004, 12: 436–446.
5. Rand JA, Trousdale RT, Ilstrup DM, Harmsen WS: Factors Affecting the Durability of Primary Total Knee Prostheses. J Bone Joint Surg Am 2003, 85: 259–265.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献