Effects of dielectric permittivities on skin heating due to millimeter wave exposure

Author:

Kanezaki Akio,Hirata Akimasa,Watanabe Soichi,Shirai Hiroshi

Abstract

Abstract Background Because the possibility of millimeter wave (MMW) exposure has increased, public concern about the health issues due to electromagnetic radiation has also increased. While many studies have been conducted for MMW exposure, the effect of dielectric permittivities on skin heating in multilayer/heterogeneous human-body models have not been adequately investigated. This is partly due to the fact that a detailed investigation of skin heating in a multilayer model by computational methods is difficult since many parameters are involved. In the present study, therefore, theoretical analyses were conducted to investigate the relationship between dielectric permittivities and MMW-induced skin heating in a one-dimensional three-layer model (skin, fat, and muscle). Methods Approximate expressions were derived for the temperature elevation and temperature difference in the skin due to MMW exposure from analytical solutions for the temperature distribution. First, the power absorption distribution was approximated from the analytical solution for a one-layer model (skin only). Then, the analytical expression of the temperature in the three-layer model was simplified on the basis of the proposal in our previous study. By examining the approximate expressions, the dominant term influencing skin heating was clarified to identify the effects of the dielectric permittivities. Finally, the effects of dielectric permittivities were clarified by applying partial differentiation to the derived dominant term. Results Skin heating can be characterized by the parameters associated with the dielectric permittivities, independently of morphological and thermal parameters. With the derived expressions, it was first clarified that skin heating correlates with the total power absorbed in the skin rather than the specific absorption rate (SAR) at the skin surface or the incident power density. Using Debye-type expression we next investigated the effect of frequency dispersion on the complex relative permittivity of tissue. The parametric study on the total power absorbed in the skin showed that skin heating increases as the static permittivity and static conductivity decrease. In addition, the maximum temperature elevation on the body surface was approximately 1.6 times that of the minimum case. This difference is smaller than the difference caused by the thermal and morphological parameters reported in our previous study. Conclusion This paper analytically clarified the effects of dielectric permittivities on the thermally steady state temperature elevation and the temperature difference in the skin of a one-dimensional three-layer model due to MMW exposure.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3