Biothermal Heating on Human Skin by Millimeter and Sub-Terahertz Waves in Outdoor Environment—A Theoretical Study

Author:

Wei Menghan1,Li Peian1,Lei Yuanshuai2,Bao Xiue12ORCID,Ma Jianjun12ORCID

Affiliation:

1. School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China

2. Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063099, China

Abstract

The frequency band in the millimeter-wave (MMW) and sub-terahertz (sub-THz) range has shown great potential in mobile communication technology due to the advantages of ultra-large bandwidth and ultra-high data rates. Based on the increasing research activities on MMW/sub-THz waves, biological safety at relevant frequencies must be explored, especially when high-power illumination occurs. Here, its non-ionizing nature plays a vital role, which makes it safe for humans at low illumination powers. However, under high power, the biothermal heating on the skin surface is still a main concern, and lots of research has been conducted in a laboratory. In this article, we analyze the thermal heating effect of human skin in outdoor environments, where atmospheric conditions can significantly impact the propagation of MMW/sub-THz waves. Our analysis is based on rat skin, which has a similar structure to human skin. A theoretical model combining Pennes’ bioheat transfer equation (BHTE), the ITU model, and the Mie scattering theory is developed. Good agreement between calculation results and measured data confirms the efficiency of this model. The influence of rainfall rate, humidity, operating frequency, illumination time, power density, and propagation distance is presented and discussed.

Funder

National Natural Science Foundation of China

Graduate Innovative Practice Project of Tangshan Research Institute, BIT

Science and Technology Innovation Program of Beijing Institute of Technology

Talent Support Program of Beijing Institute of Technology “Special Young Scholars”

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3