Author:
Jezewski Janusz,Roj Dawid,Wrobel Janusz,Horoba Krzysztof
Abstract
Abstract
Background
The currently used fetal monitoring instrumentation that is based on Doppler ultrasound technique provides the fetal heart rate (FHR) signal with limited accuracy. It is particularly noticeable as significant decrease of clinically important feature - the variability of FHR signal. The aim of our work was to develop a novel efficient technique for processing of the ultrasound signal, which could estimate the cardiac cycle duration with accuracy comparable to a direct electrocardiography.
Methods
We have proposed a new technique which provides the true beat-to-beat values of the FHR signal through multiple measurement of a given cardiac cycle in the ultrasound signal. The method consists in three steps: the dynamic adjustment of autocorrelation window, the adaptive autocorrelation peak detection and determination of beat-to-beat intervals. The estimated fetal heart rate values and calculated indices describing variability of FHR, were compared to the reference data obtained from the direct fetal electrocardiogram, as well as to another method for FHR estimation.
Results
The results revealed that our method increases the accuracy in comparison to currently used fetal monitoring instrumentation, and thus enables to calculate reliable parameters describing the variability of FHR. Relating these results to the other method for FHR estimation we showed that in our approach a much lower number of measured cardiac cycles was rejected as being invalid.
Conclusions
The proposed method for fetal heart rate determination on a beat-to-beat basis offers a high accuracy of the heart interval measurement enabling reliable quantitative assessment of the FHR variability, at the same time reducing the number of invalid cardiac cycle measurements.
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Reference24 articles.
1. Jezewski J, Wrobel J, Horoba K, Cholewa D, Gacek A, Kupka T, Matonia A: Monitoring of mechanical and electrical activity of fetal heart: The nature of signals. Arch Perinat Med 2002, 8: 40–46.
2. Peters M, Crowe J, Pieri JF, Quartero H, Hayes-Gill B, James D, Stinstra J, Shakespeare S: Monitoring the fetal heart non-invasively: a review of methods. J Perinat Med 2001, 29: 408–416. 10.1515/JPM.2001.057
3. Shakespeare SA, Crowe JA, Hayes-Gill BR, Bhogal K, James DK: The information content of Doppler ultrasound signals from the fetal heart. Med Biol Eng Comput 2001, 39: 619–626. 10.1007/BF02345432
4. Matonia A, Jezewski J, Kupka T, Wrobel J, Horoba K, Widera M: Instrumentation for fetal cardiac performance analysis during the antepartum period. Conf Proc IEEE Eng Med Biol Soc 2005, 27: 6675–6678.
5. Hasan MA, Reaz MBI, Ibrahimy MI, Hussain MS, Uddin J: Detection and Processing Techniques of FECG Signal for Fetal Monitoring. Biol Proced Online 2009, 11: 263–295. 10.1007/s12575-009-9006-z
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献