Detection and Processing Techniques of FECG Signal for Fetal Monitoring

Author:

Hasan MA,Reaz MBI,Ibrahimy MI,Hussain MS,Uddin J

Abstract

Abstract Fetal electrocardiogram (FECG) signal contains potentially precise information that could assist clinicians in making more appropriate and timely decisions during labor. The ultimate reason for the interest in FECG signal analysis is in clinical diagnosis and biomedical applications. The extraction and detection of the FECG signal from composite abdominal signals with powerful and advance methodologies are becoming very important requirements in fetal monitoring. The purpose of this review paper is to illustrate the various methodologies and developed algorithms on FECG signal detection and analysis to provide efficient and effective ways of understanding the FECG signal and its nature for fetal monitoring. A comparative study has been carried out to show the performance and accuracy of various methods of FECG signal analysis for fetal monitoring. Finally, this paper further focused some of the hardware implementations using electrical signals for monitoring the fetal heart rate. This paper opens up a passage for researchers, physicians, and end users to advocate an excellent understanding of FECG signal and its analysis procedures for fetal heart rate monitoring system.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

Reference97 articles.

1. The American College of Obstetricians and Gynecologists: Fetal heart rate monitoring during labor. 2001, [http://www.acog.org/publications/patient_education/bp015.cfm]

2. Chen P: Fetal heart monitoring. Department of Obstetrics & Gynecology, University of Pennsylvania Medical Center. 2004, [http://pennhealth.com/ency/article/003405.htm]

3. Van Geijn HP, Copray FJA: A critical appraisal of fetal surveillance. J Nurse Midwifery. 1996, 41: 64-64.

4. Crowe JA, Herbert JM, Huang XB, Reed N: Sequential recording of the abdominal fetal electrocardiogram and magnetocardiogram. Physiol Meas. 1995, 16: 43-47. 10.1088/0967-3334/16/1/005.

5. Bassil HE, Dripps JH: Real time processing and analysis of fetal phonocardiographic signals. Clin Phys Physiol Meas. 1989, 10: 67-74. 10.1088/0143-0815/10/4B/011.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3