Abstract
Abstract
Background
Objectives were to build a machine learning algorithm to identify bloodstream infection (BSI) among pediatric patients with cancer and hematopoietic stem cell transplantation (HSCT) recipients, and to compare this approach with presence of neutropenia to identify BSI.
Methods
We included patients 0–18 years of age at cancer diagnosis or HSCT between January 2009 and November 2018. Eligible blood cultures were those with no previous blood culture (regardless of result) within 7 days. The primary outcome was BSI. Four machine learning algorithms were used: elastic net, support vector machine and two implementations of gradient boosting machine (GBM and XGBoost). Model training and evaluation were performed using temporally disjoint training (60%), validation (20%) and test (20%) sets. The best model was compared to neutropenia alone in the test set.
Results
Of 11,183 eligible blood cultures, 624 (5.6%) were positive. The best model in the validation set was GBM, which achieved an area-under-the-receiver-operator-curve (AUROC) of 0.74 in the test set. Among the 2236 in the test set, the number of false positives and specificity of GBM vs. neutropenia were 508 vs. 592 and 0.76 vs. 0.72 respectively. Among 139 test set BSIs, six (4.3%) non-neutropenic patients were identified by GBM. All received antibiotics prior to culture result availability.
Conclusions
We developed a machine learning algorithm to classify BSI. GBM achieved an AUROC of 0.74 and identified 4.3% additional true cases in the test set. The machine learning algorithm did not perform substantially better than using presence of neutropenia alone to predict BSI.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献