Self-supervised machine learning using adult inpatient data produces effective models for pediatric clinical prediction tasks

Author:

Lemmon Joshua1,Guo Lin Lawrence1,Steinberg Ethan2,Morse Keith E3ORCID,Fleming Scott Lanyon2,Aftandilian Catherine4,Pfohl Stephen R5,Posada Jose D6,Shah Nigam2ORCID,Fries Jason2,Sung Lillian17

Affiliation:

1. Program in Child Health Evaluative Sciences, The Hospital for Sick Children , Toronto, ON M5G1X8, Canada

2. Stanford Center for Biomedical Informatics Research, Stanford University , Palo Alto, CA 94305, United States

3. Division of Pediatric Hospital Medicine, Department of Pediatrics, Stanford University , Palo Alto, CA 94304, United States

4. Division of Hematology/Oncology, Department of Pediatrics, Stanford University , Palo Alto, CA 94304, United States

5. Google Research , Mountain View, CA 94043, United States

6. Universidad del Norte , Barranquilla 081007, Colombia

7. Division of Haematology/Oncology, The Hospital for Sick Children , Toronto, ON M5G1X8, Canada

Abstract

Abstract Objective Development of electronic health records (EHR)-based machine learning models for pediatric inpatients is challenged by limited training data. Self-supervised learning using adult data may be a promising approach to creating robust pediatric prediction models. The primary objective was to determine whether a self-supervised model trained in adult inpatients was noninferior to logistic regression models trained in pediatric inpatients, for pediatric inpatient clinical prediction tasks. Materials and Methods This retrospective cohort study used EHR data and included patients with at least one admission to an inpatient unit. One admission per patient was randomly selected. Adult inpatients were 18 years or older while pediatric inpatients were more than 28 days and less than 18 years. Admissions were temporally split into training (January 1, 2008 to December 31, 2019), validation (January 1, 2020 to December 31, 2020), and test (January 1, 2021 to August 1, 2022) sets. Primary comparison was a self-supervised model trained in adult inpatients versus count-based logistic regression models trained in pediatric inpatients. Primary outcome was mean area-under-the-receiver-operating-characteristic-curve (AUROC) for 11 distinct clinical outcomes. Models were evaluated in pediatric inpatients. Results When evaluated in pediatric inpatients, mean AUROC of self-supervised model trained in adult inpatients (0.902) was noninferior to count-based logistic regression models trained in pediatric inpatients (0.868) (mean difference = 0.034, 95% CI=0.014-0.057; P < .001 for noninferiority and P = .006 for superiority). Conclusions Self-supervised learning in adult inpatients was noninferior to logistic regression models trained in pediatric inpatients. This finding suggests transferability of self-supervised models trained in adult patients to pediatric patients, without requiring costly model retraining.

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3