Yttrium Oxide nanoparticles induce cytotoxicity, genotoxicity, apoptosis, and ferroptosis in the human triple-negative breast cancer MDA-MB-231 cells

Author:

Emad Basant,WalyEldeen Amr Ahmed,Hassan Hebatallah,Sharaky Marwa,Abdelhamid Ismail A,Ibrahim Sherif Abdelaziz,Mohamed Hanan RH

Abstract

Abstract Background Triple-negative breast cancer (TNBC) is a lethal mammary carcinoma subtype that affects females and is associated with a worse prognosis. Chemotherapy is the only conventional therapy available for patients with TNBC due to the lack of therapeutic targets. Yttrium oxide (Y2O3) is a rare earth metal oxide, whose nanoparticle (NPs) formulations are used in various applications, including biological imaging, the material sciences, and the chemical synthesis of inorganic chemicals. However, the biological activity of Y2O3-NPs against TNBC cells has not been fully explored. The current study was conducted to assess Y2O3-NPs’ anticancer activity against the human TNBC MDA-MB-231 cell line. Methods Transmission electron microscopy (TEM), X-ray diffraction, Zeta potential, and dynamic light scattering (DLS) were used to characterize the Y2O3-NPs. SRB cell viability, reactive oxygen species (ROS) measurement, single-cell gel electrophoresis (comet assay), qPCR, flow cytometry, and Western blot were employed to assess the anticancer activity of the Y2O3-NPs. Results Our results indicate favorable physiochemical properties of Y2O3-NPs (with approximately average size 14 nm, Zeta Potential about − 53.2 mV, and polydispersity index = 0.630). Y2O3-NPs showed a potent cytotoxic effect against MDA-MB-231 cells, with IC50 values of 74.4 µg/mL, without cytotoxic effect on the normal retina REP1 and human dermal fibroblast HDF cell lines. Further, treatment of MDA-MB-231 cells with IC50 Y2O3-NPs resulted in increased oxidative stress, accumulation of intracellular ROS levels, and induced DNA damage assessed by Comet assay. Upon Y2O3-NPs treatment, a significant increase in the early and late phases of apoptosis was revealed in MDA-MB-231 cells. qPCR results showed that Y2O3-NPs significantly upregulated the pro-apoptotic genes CASP3 and CASP8 as well as ferroptosis-related gene heme oxygenase-1 (HO-1), whereas the anti-apoptotic gene BCL2 was significantly downregulated. Conclusion This study suggests that Y2O3-NPs are safe on normal REP1 and HDF cells and exhibited a potent selective cytotoxic effect against the TNBC MDA-MB-231 cells through increasing levels of ROS generation with subsequent DNA damage, and induction of apoptosis and ferroptosis.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3