Interleukin-6 mediates resistance to PI3K-pathway–targeted therapy in lymphoma

Author:

Kim Joo Hyun,Kim Won Seog,Park Chaehwa

Abstract

Abstract Background The phosphoinositol 3-kinase (PI3K) pathway is associated with poor prognosis of hematologic malignancies, providing a strong rationale for the use of PI3K inhibitors in the treatment of malignant lymphoma. However, development of resistance limits the use of PI3K inhibitors in lymphoma patients. Methods We established copanlisib (pan-PI3K inhibitor)-resistant B-cell lymphoma and duvelisib (PI3Kδ and -γ inhibitor)-resistant T-cell lymphoma cell lines. The cytokine array and the phospho-kinase array were used to identify up-regulated proteins in the resistant cells. Cytokine expression and phospho-kinase levels were examined by ELISA and Western blot analysis, respectively. Cell proliferation capabilities were measured by using CCK-8 kit and colony formation assay. The effects of inhibitors on apoptosis were detected using an Annexin V-FITC Apoptosis Detection Kit and a flow cytometry system. The underlying mechanisms were studied by transfecting recombinant plasmids or siRNA into lymphoma cell lines. Cells were transiently transfected using the Amaxa electroporation system. We evaluated the effects of PI3K inhibitor alone and in combination with JAK inhibitor (BSK805) on lymphoma proliferation and signaling pathway activation. Results Cytokine arrays revealed upregulation of interleukin (IL)-6 in both copanlisib- and duvelisib-resistant cell lines. Phosphorylated STAT5, AKT, p70S6K and MAPK were increased in copanlisib-resistant B-cell lymphoma cells, whereas phosphorylated STAT3 and NF-κB were increased in duvelisib-resistant T cell lymphoma cells. Conversely, depletion of IL-6 sensitized both resistant cell lines, and led to downregulation of phosphorylated STAT3 and STAT5 in copanlisib- and duvelisib-resistant cells, respectively. Moreover, combined treatment with a JAK inhibitor (BSK805) and a PI3K inhibitor circumvented the acquired resistance to PI3K inhibitors in lymphoma, and concurrent inhibition of the activated pathways produced combined effects. Conclusions IL-6–induced STAT3 or STAT5 activation is a critical mechanism underlying PI3K inhibitor resistance in lymphoma, supporting the utility of IL-6 as an effective biomarker to predict therapeutic response to PI3K inhibitors.

Funder

Basic Science Research Program through the National Research Foundation of Korea

the Basic Science Research Program through the National Research Foundation of Korea

the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology and the Korean Government

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3