Identification of an independent immune-genes prognostic index for renal cell carcinoma

Author:

Li Guangyao,Wei Xiyi,Su Shifeng,Wang Shangqian,Wang Wei,Wang Yichun,Meng Xianghu,Xia Jiadong,Song Ninghong,Qin Chao

Abstract

Abstract Background Considerable evidence has indicated an association between the immune microenvironment and clinical outcome in ccRCC. The purpose of this study is to extensively figure out the influence of immune-related genes of tumors on the prognosis of patients with ccRCC. Methods Files containing 2498 immune-related genes were obtained from the Immunology Database and Analysis Portal (ImmPort), and the transcriptome data and clinical information relevant to patients with ccRCC were identified and downloaded from the TCGA data-base. Univariate and multivariate Cox regression analyses were used to screen out prognostic immune genes. The immune risk score model was established in light of the regression coefficient between survival and hub immune-related genes. We eventually set up a nomogram for the prediction of the overall survival for ccRCC. Kaplan-Meier (K-M) and ROC curve was used in evaluating the value of the predictive risk model. A P value of < 0.05 indicated statistically significant differences throughout data analysis. Results Via differential analysis, we found that 556 immune-related genes were expressed differentially between tumor and normal tissues (p < 0. 05). The analysis of univariate Cox regression exhibited that there was a statistical correlation between 43 immune genes and survival risk in patients with ccRCC (p < 0.05). Through Lasso-Cox regression analysis, we established an immune genetic risk scoring model based on 18 immune-related genes. The high-risk group showed a bad prognosis in K-M analysis. (p < 0.001). ROC curve showed that it was reliable of the immune risk score model to predict survival risk (5 year over survival, AUC = 0.802). The model indicated satisfactory AUC and survival correlation in the validation data set (5 year OS, Area Under Curve = 0.705, p < 0.05). From Multivariate regression analysis, the immune-risk score model plays an isolated role in the prediction of the prognosis of ccRCC. Under multivariate-Cox regression analysis, we set up a nomogram for comprehensive prediction of ccRCC patients’ survival rate. At last, it was identified that 18 immune-related genes and risk scores were not only tremendously related to clinical prognosis but also contained in a variety of carcinogenic pathways. Conclusion In general, tumor immune-related genes play essential roles in ccRCC development and progression. Our research established an unequal 18-immune gene risk index to predict the prognosis of ccRCC visually. This index was found to be an independent predictive factor for ccRCC.

Funder

Six Talent Peaks Project in Jiangsu Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3