Right and left-sided colon cancers - specificity of molecular mechanisms in tumorigenesis and progression

Author:

Mukund Kavitha,Syulyukina Natalia,Ramamoorthy Sonia,Subramaniam Shankar

Abstract

Abstract Background Given the differences in embryonic origin, vascular and nervous supplies, microbiotic burden, and main physiological functions of left and right colons, tumor location is increasingly suggested to dictate tumor behavior affecting pathology, progression and prognosis. Right-sided colon cancers arise in the cecum, ascending colon, hepatic flexure and/or transverse colon, while left-sided colon cancers arise in the splenic flexure, descending, and/or sigmoid colon. In contrast to prior reports, we attempt to delineate programs of tumorigenesis independently for each side. Methods Four hundred and eleven samples were extracted from The Cancer Genome Atlas-COAD cohort, based on a conservative sample inclusion criterion. Each side was independently analyzed with respect to their respective normal tissue, at the level of transcription, post-transcription, miRNA control and methylation in both a stage specific and stage-agnostic manner. Results Our results indicate a suppression of enzymes involved in various stages of carcinogen breakdown including CYP2C8, CYP4F12, GSTA1, and UGT1A within right colon tumors. This implies its reduced capacity to detoxify carcinogens, contributing to a genotoxic tumor environment, and subsequently a more aggressive phenotype. Additionally, we highlight a crucial nexus between calcium homeostasis (sensing, mobilization and absorption) and immune/GPCR signaling within left-sided tumors, possibly contributing to its reduced proliferative and metastatic potential. Interestingly, two genes SLC6A4 and HOXB13 show opposing regulatory trends within right and left tumors. Post-transcriptional regulation mediated by both RNA-binding proteins (e.g. NKRF (in left) and MSI2 (in right)) and miRNAs (e.g. miR-29a (in left); miR-155, miR181-d, miR-576 and miR23a (in right)) appear to exhibit side-specificity in control of their target transcripts and is pronounced in right colon tumors. Additionally, methylation results depict location-specific differences, with increased hypomethylation in open seas within left tumors, and increased hypermethylation of CpG islands within right tumors. Conclusions Differences in molecular mechanisms captured here highlight distinctions in tumorigenesis and progression between left and right colon tumors, which will serve as the basis for future studies, influencing the efficacies of existing and future diagnostic, prognostic and therapeutic interventions.

Funder

National Institutes of Health

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3