Sequential analysis of transcript expression patterns improves survival prediction in multiple cancers

Author:

Mandel Jordan,Avula Raghunandan,Prochownik Edward V.

Abstract

Abstract Background Long-term survival in numerous cancers often correlates with specific whole transcriptome profiles or the expression patterns of smaller numbers of transcripts. In some instances, these are better predictors of survival than are standard classification methods such as clinical stage or hormone receptor status in breast cancer. Here, we have used the method of “t-distributed stochastic neighbor embedding” (t-SNE) to show that, collectively, the expression patterns of small numbers of functionally-related transcripts from fifteen cancer pathways correlate with long-term survival in the vast majority of tumor types from The Cancer Genome Atlas (TCGA). We then ask whether the sequential application of t-SNE using the transcripts from a second pathway improves predictive capability or whether t-SNE can be used to refine the initial predictive power of whole transcriptome profiling. Methods RNAseq data from 10,227 tumors in TCGA were previously analyzed using t-SNE-based clustering of 362 transcripts comprising 15 distinct cancer-related pathways. After showing that certain clusters were associated with differential survival, each relevant cluster was re-analyzed by t-SNE with a second pathway’s transcripts. Alternatively, groups with differential survival identified by whole transcriptome profiling were subject to a second, t-SNE-based analysis. Results Sequential analyses employing either t-SNE➔t-SNE or whole transcriptome profiling➔t-SNE analyses were in many cases superior to either individual method at predicting long-term survival. We developed a dynamic and intuitive R Shiny web application to explore the t-SNE based transcriptome clustering and survival analysis across all TCGA cancers and all 15 cancer-related pathways in this analysis. This application provides a simple interface to select specific t-SNE clusters and analyze survival predictability using both individual or sequential approaches. The user can recreate the relationships described in this analysis and further explore many different cancer, pathway, and cluster combinations. Non-R users can access the application on the web at https://chpupsom19.shinyapps.io/Survival_Analysis_tsne_umap_TCGA. The application, R scripts performing survival analysis, and t-SNE clustering results of TCGA expression data can be accessed on GitHub enabling users to download and run the application locally with ease (https://github.com/RavulaPitt/Sequential-t-SNE/). Conclusions The long-term survival of patients correlated with expression patterns of 362 transcripts from 15 cancer-related pathways. In numerous cases, however, survival could be further improved when the cohorts were re-analyzed using iterative t-SNE clustering or when t-SNE clustering was applied to cohorts initially segregated by whole transcriptome-based hierarchical clustering.

Funder

National Institutes of Health

Hyundai Hope On Wheels

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Reference55 articles.

1. Goldberg SL, Chen L, Guerin A, Macalalad AR, Liu N, Kaminsky M, et al. Association between molecular monitoring and long-term outcomes in chronic myelogenous leukemia patients treated with first line imatinib. Curr Med Res Opin. 2013;29(9):1075–82.

2. Grimwade D, Biondi A, Mozziconacci MJ, Hagemeijer A, Berger R, Neat M, et al. Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): results of the European Working Party. Groupe Français de Cytogénétique Hématologique, Groupe de Français d'Hematologie Cellulaire, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action "Molecular Cytogenetic Diagnosis in Haematological Malignancies". Blood. 2000;96:1297–308.

3. Nicolini A, Ferrari P, Duffy MJ. Prognostic and predictive biomarkers in breast cancer: past, present and future. Semin Cancer Biol. 2018;52:56–73.

4. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer. 2014;120:3627–34.

5. Schwab M. Amplification of N-myc as a prognostic marker for patients with neuroblastoma. Semin Cancer Biol. 1993;4:13–8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3