Artificial intelligence assisted ultrasound for the non-invasive prediction of axillary lymph node metastasis in breast cancer

Author:

Wang Xuefei,Nie Lunyiu,Zhu Qingli,Zuo Zhichao,Liu Guanmo,Sun Qiang,Zhai Jidong,Li Jianchu

Abstract

Abstract Purpose A practical noninvasive method is needed to identify lymph node (LN) status in breast cancer patients diagnosed with a suspicious axillary lymph node (ALN) at ultrasound but a negative clinical physical examination. To predict ALN metastasis effectively and noninvasively, we developed an artificial intelligence-assisted ultrasound system and validated it in a retrospective study. Methods A total of 266 patients treated with sentinel LN biopsy and ALN dissection at Peking Union Medical College & Hospital(PUMCH) between the year 2017 and 2019 were assigned to training, validation and test sets (8:1:1). A deep learning model architecture named DeepLabV3 + was used together with ResNet-101 as the backbone network to create an ultrasound image segmentation diagnosis model. Subsequently, the segmented images are classified by a Convolutional Neural Network to predict ALN metastasis. Results The area under the receiver operating characteristic curve of the model for identifying metastasis was 0.799 (95% CI: 0.514–1.000), with good end-to-end classification accuracy of 0.889 (95% CI: 0.741–1.000). Moreover, the specificity and positive predictive value of this model was 100%, providing high accuracy for clinical diagnosis. Conclusion This model can be a direct and reliable tool for the evaluation of individual LN status. Our study focuses on predicting ALN metastasis by radiomic analysis, which can be used to guide further treatment planning in breast cancer.

Funder

National High Level Hospital Clinical Research Funding

CAMS Innovation Fund for Medical Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3