Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams

Author:

Shen YiqiuORCID,Shamout Farah E.ORCID,Oliver Jamie R.,Witowski JanORCID,Kannan Kawshik,Park JungkyuORCID,Wu Nan,Huddleston Connor,Wolfson Stacey,Millet Alexandra,Ehrenpreis Robin,Awal Divya,Tyma Cathy,Samreen Naziya,Gao Yiming,Chhor Chloe,Gandhi Stacey,Lee Cindy,Kumari-Subaiya Sheila,Leonard Cindy,Mohammed Reyhan,Moczulski Christopher,Altabet Jaime,Babb James,Lewin Alana,Reig BeatriuORCID,Moy Linda,Heacock Laura,Geras Krzysztof J.ORCID

Abstract

AbstractThough consistently shown to detect mammographically occult cancers, breast ultrasound has been noted to have high false-positive rates. In this work, we present an AI system that achieves radiologist-level accuracy in identifying breast cancer in ultrasound images. Developed on 288,767 exams, consisting of 5,442,907 B-mode and Color Doppler images, the AI achieves an area under the receiver operating characteristic curve (AUROC) of 0.976 on a test set consisting of 44,755 exams. In a retrospective reader study, the AI achieves a higher AUROC than the average of ten board-certified breast radiologists (AUROC: 0.962 AI, 0.924 ± 0.02 radiologists). With the help of the AI, radiologists decrease their false positive rates by 37.3% and reduce requested biopsies by 27.8%, while maintaining the same level of sensitivity. This highlights the potential of AI in improving the accuracy, consistency, and efficiency of breast ultrasound diagnosis.

Funder

Polish National Agency for Academic Exchange

U.S. Department of Health & Human Services | National Institutes of Health

National Science Foundation

Gordon and Betty Moore Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3