Author:
Cario Clinton L.,Chen Emmalyn,Leong Lancelote,Emami Nima C.,Lopez Karen,Tenggara Imelda,Simko Jeffry P.,Friedlander Terence W.,Li Patricia S.,Paris Pamela L.,Carroll Peter R.,Witte John S.
Abstract
Abstract
Background
Cell-free DNA’s (cfDNA) use as a biomarker in cancer is challenging due to genetic heterogeneity of malignancies and rarity of tumor-derived molecules. Here we describe and demonstrate a novel machine-learning guided panel design strategy for improving the detection of tumor variants in cfDNA. Using this approach, we first generated a model to classify and score candidate variants for inclusion on a prostate cancer targeted sequencing panel. We then used this panel to screen tumor variants from prostate cancer patients with localized disease in both in silico and hybrid capture settings.
Methods
Whole Genome Sequence (WGS) data from 550 prostate tumors was analyzed to build a targeted sequencing panel of single point and small (< 200 bp) indel mutations, which was subsequently screened in silico against prostate tumor sequences from 5 patients to assess performance against commonly used alternative panel designs. The panel’s ability to detect tumor-derived cfDNA variants was then assessed using prospectively collected cfDNA and tumor foci from a test set 18 prostate cancer patients with localized disease undergoing radical proctectomy.
Results
The panel generated from this approach identified as top candidates mutations in known driver genes (e.g. HRAS) and prostate cancer related transcription factor binding sites (e.g. MYC, AR). It outperformed two commonly used designs in detecting somatic mutations found in the cfDNA of 5 prostate cancer patients when analyzed in an in silico setting. Additionally, hybrid capture and 2500X sequencing of cfDNA molecules using the panel resulted in detection of tumor variants in all 18 patients of a test set, where 15 of the 18 patients had detected variants found in multiple foci.
Conclusion
Machine learning-prioritized targeted sequencing panels may prove useful for broad and sensitive variant detection in the cfDNA of heterogeneous diseases. This strategy has implications for disease detection and monitoring when applied to the cfDNA isolated from prostate cancer patients.
Funder
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference38 articles.
1. Tie J, Semira C, Gibbs P. Circulating tumor DNA as a biomarker to guide therapy in post-operative locally advanced rectal cancer: the best option? Expert review of molecular diagnostics, vol. 18: Taylor & Francis; 2017. p. 1–3.
2. Dawson S-J, Tsui DWY, Murtaza M, Biggs H, Rueda OM, Chin S-F, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368:1199–209.
3. Volik S, Alcaide M, Morin RD, Collins C. Cell-free DNA (cfDNA): Clinical Significance and Utility in Cancer Shaped By Emerging Technologies. Mol Cancer Res American Association for Cancer Research. 2016;14:898–908.
4. Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem. 2015;61:112–23.
5. Diaz LA, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32:579–86.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献