HotSPOT: A Computational Tool to Design Targeted Sequencing Panels to Assess Early Photocarcinogenesis

Author:

Grant Sydney R.12,Rosario Spencer R.3ORCID,Patentreger Andrew D.12,Shary Nico2,Fitzgerald Megan E.12,Singh Prashant K.4,Foster Barbara A.5,Huss Wendy J.12ORCID,Wei Lei3,Paragh Gyorgy12ORCID

Affiliation:

1. Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA

2. Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA

3. Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA

4. Department of Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA

5. Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA

Abstract

Mutations found in skin are acquired in specific patterns, clustering around mutation-prone genomic locations. The most mutation-prone genomic areas, mutation hotspots, first induce the growth of small cell clones in healthy skin. Mutations accumulate over time, and clones with driver mutations may give rise to skin cancer. Early mutation accumulation is a crucial first step in photocarcinogenesis. Therefore, a sufficient understanding of the process may help predict disease onset and identify avenues for skin cancer prevention. Early epidermal mutation profiles are typically established using high-depth targeted next-generation sequencing. However, there is currently a lack of tools for designing custom panels to capture mutation-enriched genomic regions efficiently. To address this issue, we created a computational algorithm that implements a pseudo-exhaustive approach to identify the best genomic areas to target. We benchmarked the current algorithm in three independent mutation datasets of human epidermal samples. Compared to the sequencing panel designs originally used in these publications, the mutation capture efficacy (number of mutations/base pairs sequenced) of our designed panel improved 9.6–12.1-fold. Mutation burden in the chronically sun-exposed and intermittently sun-exposed normal epidermis was measured within genomic regions identified by hotSPOT based on cutaneous squamous cell carcinoma (cSCC) mutation patterns. We found a significant increase in mutation capture efficacy and mutation burden in cSCC hotspots in chronically sun-exposed vs. intermittently sun-exposed epidermis (p < 0.0001). Our results show that our hotSPOT web application provides a publicly available resource for researchers to design custom panels, enabling efficient detection of somatic mutations in clinically normal tissues and other similar targeted sequencing studies. Moreover, hotSPOT also enables the comparison of mutation burden between normal tissues and cancer.

Funder

NIH

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3