Machine learning-based improvement of MDS-CBC score brings platelets into the limelight to optimize smear review in the hematology laboratory

Author:

Zhu Jaja,Lemaire Pierre,Mathis Stéphanie,Ronez Emily,Clauser Sylvain,Jondeau Katayoun,Fenaux Pierre,Adès Lionel,Bardet ValérieORCID

Abstract

Abstract Background Myelodysplastic syndromes (MDS) are clonal hematopoietic diseases of the elderly characterized by chronic cytopenias, ineffective and dysplastic haematopoiesis, recurrent genetic abnormalities and increased risk of progression to acute myeloid leukemia. A challenge of routine laboratory Complete Blood Counts (CBC) is to correctly identify MDS patients while simultaneously avoiding excess smear reviews. To optimize smear review, the latest generations of hematology analyzers provide new cell population data (CPD) parameters with an increased ability to screen MDS, among which the previously described MDS-CBC Score, based on Absolute Neutrophil Count (ANC), structural neutrophil dispersion (Ne-WX) and mean corpuscular volume (MCV). Ne-WX is increased in the presence of hypogranulated/degranulated neutrophils, a hallmark of dysplasia in the context of MDS or chronic myelomonocytic leukemia. Ne-WX and MCV are CPD derived from leukocytes and red blood cells, therefore the MDS-CBC score does not include any platelet-derived CPD. We asked whether this score could be improved by adding the immature platelet fraction (IPF), a CPD used as a surrogate marker of dysplastic thrombopoiesis. Methods Here, we studied a cohort of more than 500 individuals with cytopenias, including 168 MDS patients. In a first step, we used Breiman’s random forests algorithm, a machine-learning approach, to identify the most relevant parameters for MDS prediction. We then designed Classification And Regression Trees (CART) to evaluate, using resampling, the effect of model tuning parameters on performance and choose the “optimal” model across these parameters. Results Using random forests algorithm, we identified Ne-WX and IPF as the strongest discriminatory predictors, explaining 37 and 33% of diagnoses respectively. To obtain “simplified” trees, which could be easily implemented into laboratory middlewares, we designed CART combining MDS-CBC score and IPF. Optimal results were obtained using a MDS-CBC score threshold equal to 0.23, and an IPF threshold equal to 3%. Conclusions We propose an extended MDS-CBC score, including CPD from the three myeloid lineages, to improve MDS diagnosis on routine laboratory CBCs and optimize smear reviews.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Reference17 articles.

1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumors of haematopoeitic and lymphoid tissues. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. WHO classification of tumors of Haematopoietic and lymphoid tissues. Revised. 4th ed. Lyon, France: IARC; 2017. p. 98–106.

2. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079–88.

3. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Sole F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–65.

4. Hasserjian RP, Orazi A, Brunning RD, Germing U, Le Beau MM, Porwit A, et al. Myelodysplastic syndromes: overview. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. WHO classification of tumors of Haematopoietic and lymphoid tissues. Revised. 4th ed. Lyon, France: IARC; 2017. p. 98–106.

5. Cogle CR, Craig BM, Rollison DE, List AF. Incidence of the myelodysplastic syndromes using a novel claims-based algorithm: high number of uncaptured cases by cancer registries. Blood. 2011;117(26):7121–5.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3