Integrating AI and ML in Myelodysplastic Syndrome Diagnosis: State-of-the-Art and Future Prospects

Author:

Elshoeibi Amgad Mohamed1ORCID,Badr Ahmed1ORCID,Elsayed Basel1ORCID,Metwally Omar1,Elshoeibi Raghad2ORCID,Elhadary Mohamed Ragab1ORCID,Elshoeibi Ahmed3,Attya Mohamed Amro4,Khadadah Fatima5,Alshurafa Awni6,Alhuraiji Ahmad5,Yassin Mohamed16ORCID

Affiliation:

1. College of Medicine, QU Health, Qatar University, Doha 2713, Qatar

2. College of Medicine, Mansoura University, Mansoura 35516, Egypt

3. School of Medicine, Newgiza University, Giza 12577, Egypt

4. Faculty of Medicine, Alexandria University, Alexandria 21544, Egypt

5. Kuwait Cancer Centre, Sabah Medical Region, Shuwaikh 1031, Kuwait

6. Hematology Section, Medical Oncology, National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation, Doha 3050, Qatar

Abstract

Myelodysplastic syndrome (MDS) is composed of diverse hematological malignancies caused by dysfunctional stem cells, leading to abnormal hematopoiesis and cytopenia. Approximately 30% of MDS cases progress to acute myeloid leukemia (AML), a more aggressive disease. Early detection is crucial to intervene before MDS progresses to AML. The current diagnostic process for MDS involves analyzing peripheral blood smear (PBS), bone marrow sample (BMS), and flow cytometry (FC) data, along with clinical patient information, which is labor-intensive and time-consuming. Recent advancements in machine learning offer an opportunity for faster, automated, and accurate diagnosis of MDS. In this review, we aim to provide an overview of the current applications of AI in the diagnosis of MDS and highlight their advantages, disadvantages, and performance metrics.

Funder

QU Health, Qatar University

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3