Quantifying the short-term effects of air pollution on health in the presence of exposure measurement error: a simulation study of multi-pollutant model results

Author:

Evangelopoulos DimitrisORCID,Katsouyanni Klea,Schwartz Joel,Walton Heather

Abstract

Abstract Background Most epidemiological studies estimate associations without considering exposure measurement error. While some studies have estimated the impact of error in single-exposure models we aimed to quantify the effect of measurement error in multi-exposure models, specifically in time-series analysis of PM2.5, NO2, and mortality using simulations, under various plausible scenarios for exposure errors. Measurement error in multi-exposure models can lead to effect transfer where the effect estimate is overestimated for the pollutant estimated with more error to the one estimated with less error. This complicates interpretation of the independent effects of different pollutants and thus the relative importance of reducing their concentrations in air pollution policy. Methods Measurement error was defined as the difference between ambient concentrations and personal exposure from outdoor sources. Simulation inputs for error magnitude and variability were informed by the literature. Error-free exposures with their consequent health outcome and error-prone exposures of various error types (classical/Berkson) were generated. Bias was quantified as the relative difference in effect estimates of the error-free and error-prone exposures. Results Mortality effect estimates were generally underestimated with greater bias observed when low ratios of the true exposure variance over the error variance were assumed (27.4% underestimation for NO2). Higher ratios resulted in smaller, but still substantial bias (up to 19% for both pollutants). Effect transfer was observed indicating that less precise measurements for one pollutant (NO2) yield more bias, while the co-pollutant (PM2.5) associations were found closer to the true. Interestingly, the sum of single-pollutant model effect estimates was found closer to the summed true associations than those from multi-pollutant models, due to cancelling out of confounding and measurement error bias. Conclusions Our simulation study indicated an underestimation of true independent health effects of multiple exposures due to measurement error. Using error parameter information in future epidemiological studies should provide more accurate concentration-response functions.

Funder

National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Health Impact of Environmental Hazards

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3