Comparison of personal exposure to black carbon levels with fixed-site monitoring data and with dispersion modelling and the influence of activity patterns and environment

Author:

Gruzieva Olena,Georgelis Antonios,Andersson Niklas,Johansson Christer,Bellander Tom,Merritt Anne-SophieORCID

Abstract

Abstract Background Short-term studies of health effects from ambient air pollution usually rely on fixed site monitoring data or spatio-temporal models for exposure characterization, but the relation to personal exposure is often not known. Objective We aimed to explore this relation for black carbon (BC) in central Stockholm. Methods Families (n = 46) with an infant, one parent working and one parent on parental leave, carried battery-operated BC instruments for 7 days. Routine BC monitoring data were obtained from rural background (RB) and urban background (UB) sites. Outdoor levels of BC at home and work were estimated in 24 h periods by dispersion modelling based on hourly real-time meteorological data, and statistical meteorological data representing annual mean conditions. Global radiation, air pressure, precipitation, temperature, and wind speed data were obtained from the UB station. All families lived in the city centre, within 4 km of the UB station. Results The average level of 24 h personal BC was 425 (s.d. 181) ng/m3 for parents on leave, and 394 (s.d. 143) ng/m3 for working parents. The corresponding fixed-site monitoring observations were 148 (s.d. 139) at RB and 317 (s.d. 149) ng/m3 at UB. Modelled BC levels at home and at work were 493 (s.d. 228) and 331 (s.d. 173) ng/m3, respectively. UB, RB and air pressure explained only 21% of personal 24 h BC variability for parents on leave and 25% for working parents. Modelled home BC and observed air pressure explained 23% of personal BC, and adding modelled BC at work increased the explanation to 34% for the working parents. Impact Short-term studies of health effects from ambient air pollution usually rely on fixed site monitoring data or spatio-temporal models for exposure characterization, but the relation to actual personal exposure is often not known. In this study we showed that both routine monitoring and modelled data explained less than 35% of variability in personal black carbon exposure. Hence, short-term health effects studies based on fixed site monitoring or spatio-temporal modelling are likely to be underpowered and subject to bias.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3