Associations between urinary concentrations of bisphenols and serum concentrations of sex hormones among US. Males

Author:

Zhang Chichen,Luo Yuehong,Qiu Shi,Huang Xinyi,Jin Kun,Li Jiakun,Yang Mi,Hu Dan,Zheng Xiaonan,Jiang Zhongyuan,Wang Mingda,Zou Xiaoli,Wei Qiang

Abstract

Abstract Background Bisphenol A (BPA) exposure and its structural analogs (BPS and BPF) might cause endocrine alterations and adverse physiological effects. Few studies to date have directly explored the association between its structural analogs (BPS, BPF) and sex hormones in adult male participants. Therefore, we aimed to assess the associations between BPA, BPS, BPF, and sex hormones in American adult men. Methods We used data from the U.S. National Health and Nutrition Examination Survey 2011–2016. We excluded participants without data available on sex hormones and urinary bisphenols. Furthermore, participants consuming sex hormone medications were excluded. Multivariable regression models were performed to assess the association between bisphenols and sex hormones. Results In this study, 2367 participants were included. Of 2367, in 1575 participants, the data on BPS and BPF were available. We found that a per unit increase in BPF was associated with 0.575 ng/dL higher total testosterone (TT) (Model 2: 95% CI: 0.047, 1.103, P = 0.033). However, there was no significant association between BPA or BPS and TT. Furthermore, increased BPA and BPS levels were associated with higher levels of sex hormone-binding globulin (SHBG) (Model 2: β = 0.364, 95% CI: 0.158, 0.571; β = 0.25, 95% CI: 0.071, 0.429, respectively). Additionally, participants in the highest BPA exposure quartile (quartile 4) had 4.072 nmol/L higher levels of SHBG than those in quartile 1 (Model 2: 95% CI: 0.746, 7.397, P = 0.017; P for trend =0.005). Both BPA and BPS were negatively associated with free testosterone (FT, nmol/L) after full adjustment (Model 2, β = − 0.01%, P = 0.0211, P = 0.0211; Model 2, β = − 0.01%, P = 0.0258, respectively). However, BPF was positively associated with FT (Model 2, β = 0.0029%, P = 0.0028). Conclusion Our study indicated that exposure to both BPA and its substitutions could alter sex hormone levels. This finding supports the possibility that human exposure to bisphenols at environmental levels might affect the endogenous hormone balance.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3