The rate and spectrum of mosaic mutations during embryogenesis revealed by RNA sequencing of 49 tissues

Author:

Muyas Francesc,Zapata Luis,Guigó Roderic,Ossowski StephanORCID

Abstract

Abstract Background Mosaic mutations acquired during early embryogenesis can lead to severe early-onset genetic disorders and cancer predisposition, but are often undetectable in blood samples. The rate and mutational spectrum of embryonic mosaic mutations (EMMs) have only been studied in few tissues, and their contribution to genetic disorders is unknown. Therefore, we investigated how frequent mosaic mutations occur during embryogenesis across all germ layers and tissues. Methods Mosaic mutation detection in 49 normal tissues from 570 individuals (Genotype-Tissue Expression (GTEx) cohort) was performed using a newly developed multi-tissue, multi-individual variant calling approach for RNA-seq data. Our method allows for reliable identification of EMMs and the developmental stage during which they appeared. Results The analysis of EMMs in 570 individuals revealed that newborns on average harbor 0.5–1 EMMs in the exome affecting multiple organs (1.3230 × 10−8 per nucleotide per individual), a similar frequency as reported for germline de novo mutations. Our multi-tissue, multi-individual study design allowed us to distinguish mosaic mutations acquired during different stages of embryogenesis and adult life, as well as to provide insights into the rate and spectrum of mosaic mutations. We observed that EMMs are dominated by a mutational signature associated with spontaneous deamination of methylated cytosines and the number of cell divisions. After birth, cells continue to accumulate somatic mutations, which can lead to the development of cancer. Investigation of the mutational spectrum of the gastrointestinal tract revealed a mutational pattern associated with the food-borne carcinogen aflatoxin, a signature that has so far only been reported in liver cancer. Conclusions In summary, our multi-tissue, multi-individual study reveals a surprisingly high number of embryonic mosaic mutations in coding regions, implying novel hypotheses and diagnostic procedures for investigating genetic causes of disease and cancer predisposition.

Funder

Horizon 2020 Framework Programme

Ministerio de Economía y Competitividad

Generalitat de Catalunya

National Institutes of Health

European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Research Fellowship scheme

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3