Abstract
AbstractIdentification of somatic mutations (SMs) is essential for characterizing cancer genomes. While DNA-seq is the prevalent method for identifying SMs, RNA-seq provides an alternative strategy to discover tumor mutations in the transcribed genome. Here, we have developed a machine learning based pipeline to discover SMs based on RNA-seq data (designated as RNA-SMs). Subsequently, we have conducted a pan-cancer analysis to systematically identify RNA-SMs from over 8,000 tumors in The Cancer Genome Atlas (TCGA). In this way, we have identified over 105,000 novel SMs that had not been reported in previous TCGA studies. These novel SMs have significant clinical implications in designing targeted therapy for improved patient outcomes. Further, we have combined the SMs identified by both RNA-seq and DNA-seq analyses to depict an updated mutational landscape across 32 cancer types. This new online SM atlas, OncoDB (https://oncodb.org), offers a more complete view of gene mutations that underline the development and progression of various cancers.
Funder
U.S. Department of Health & Human Services | National Institutes of Health
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献