An 8-gene machine learning model improves clinical prediction of severe dengue progression

Author:

Liu Yiran E.,Saul Sirle,Rao Aditya Manohar,Robinson Makeda Lucretia,Agudelo Rojas Olga Lucia,Sanz Ana Maria,Verghese Michelle,Solis Daniel,Sibai Mamdouh,Huang Chun Hong,Sahoo Malaya Kumar,Gelvez Rosa Margarita,Bueno Nathalia,Estupiñan Cardenas Maria Isabel,Villar Centeno Luis Angel,Rojas Garrido Elsa Marina,Rosso Fernando,Donato Michele,Pinsky Benjamin A.,Einav Shirit,Khatri PurveshORCID

Abstract

Abstract Background Each year 3–6 million people develop life-threatening severe dengue (SD). Clinical warning signs for SD manifest late in the disease course and are nonspecific, leading to missed cases and excess hospital burden. Better SD prognostics are urgently needed. Methods We integrated 11 public datasets profiling the blood transcriptome of 365 dengue patients of all ages and from seven countries, encompassing biological, clinical, and technical heterogeneity. We performed an iterative multi-cohort analysis to identify differentially expressed genes (DEGs) between non-severe patients and SD progressors. Using only these DEGs, we trained an XGBoost machine learning model on public data to predict progression to SD. All model parameters were “locked” prior to validation in an independent, prospectively enrolled cohort of 377 dengue patients in Colombia. We measured expression of the DEGs in whole blood samples collected upon presentation, prior to SD progression. We then compared the accuracy of the locked XGBoost model and clinical warning signs in predicting SD. Results We identified eight SD-associated DEGs in the public datasets and built an 8-gene XGBoost model that accurately predicted SD progression in the independent validation cohort with 86.4% (95% CI 68.2–100) sensitivity and 79.7% (95% CI 75.5–83.9) specificity. Given the 5.8% proportion of SD cases in this cohort, the 8-gene model had a positive and negative predictive value (PPV and NPV) of 20.9% (95% CI 16.7–25.6) and 99.0% (95% CI 97.7–100.0), respectively. Compared to clinical warning signs at presentation, which had 77.3% (95% CI 58.3–94.1) sensitivity and 39.7% (95% CI 34.7–44.9) specificity, the 8-gene model led to an 80% reduction in the number needed to predict (NNP) from 25.4 to 5.0. Importantly, the 8-gene model accurately predicted subsequent SD in the first three days post-fever onset and up to three days prior to SD progression. Conclusions The 8-gene XGBoost model, trained on heterogeneous public datasets, accurately predicted progression to SD in a large, independent, prospective cohort, including during the early febrile stage when SD prediction remains clinically difficult. The model has potential to be translated to a point-of-care prognostic assay to reduce dengue morbidity and mortality without overwhelming limited healthcare resources.

Funder

Dr. Ralph and Marian Falk Medical Research Trust

U.S. Department of Defense

SPARK at Stanford

Stanford Bio-X

National Institute of Allergy and Infectious Diseases

Bill and Melinda Gates Foundation

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3