Using Computational Simulations Based on Fuzzy Cognitive Maps to Detect Dengue Complications

Author:

Hoyos William12ORCID,Hoyos Kenia3ORCID,Ruíz Rander4ORCID

Affiliation:

1. Grupo de Investigación en Ingeniería Sostenible e Inteligente, Universidad Cooperativa de Colombia, Montería 230002, Colombia

2. Grupo de Investigación en I+D+I en TIC, Universidad EAFIT, Medellín 050022, Colombia

3. Laboratorio Clínico Humano, Clínica Salud Social, Sincelejo 700001, Colombia

4. Grupo de Investigación Interdisciplinario del Bajo Cauca y Sur de Córdoba, Universidad de Antioquia, Campus Caucasia, Caucasia 052410, Colombia

Abstract

Dengue remains a globally prevalent and potentially fatal disease, affecting millions of people worldwide each year. Early and accurate detection of dengue complications is crucial to improving clinical outcomes and reducing the burden on healthcare systems. In this study, we explore the use of computational simulations based on fuzzy cognitive maps (FCMs) to improve the detection of dengue complications. We propose an innovative approach that integrates clinical data into a computational model that mimics the decision-making process of a medical expert. Our method uses FCMs to model complexity and uncertainty in dengue. The model was evaluated in simulated scenarios with each of the dengue classifications. These maps allow us to represent and process vague and fuzzy information effectively, capturing relationships that often go unnoticed in conventional approaches. The results of the simulations show the potential of our approach to detecting dengue complications. This innovative strategy has the potential to transform the way clinical management of dengue is approached. This research is a starting point for further development of complication detection approaches for events of public health concern, such as dengue.

Funder

Universidad Cooperativa de Colombia

Colombian Ministry of Science and Technology’s Bicentennial PhD Grant 2020

Publisher

MDPI AG

Reference48 articles.

1. World Health Organization (2009). Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control, WHO Press.

2. Global prevalence of asymptomatic dengue infections—A systematic review and meta-analysis;Asish;Int. J. Infect. Dis.,2023

3. Centers for Disease Control and Prevention (2023, November 23). Dengue, Available online: https://cdc.gov/dengue/index.html.

4. Development and Performance of Dengue Diagnostic Clinical Algorithms in Colombia;Tovar;Am. J. Trop. Med. Hyg.,2020

5. World Health Organization (2023, October 13). Dengue and Severe Dengue. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3