Author:
Pedroso Amanda P,Watanabe Regina L H,Albuquerque Kelse T,Telles Mônica M,Andrade Maria C C,Perez Juliana D,Sakata Maísa M,Lima Mariana L,Estadella Debora,Nascimento Cláudia M O,Oyama Lila M,Rosa José C,Casarini Dulce E,Ribeiro Eliane B
Abstract
Abstract
Background
The hypothalamus plays a pivotal role in numerous mechanisms highly relevant to the maintenance of body homeostasis, such as the control of food intake and energy expenditure. Impairment of these mechanisms has been associated with the metabolic disturbances involved in the pathogenesis of obesity. Since rodent species constitute important models for metabolism studies and the rat hypothalamus is poorly characterized by proteomic strategies, we performed experiments aimed at constructing a two-dimensional gel electrophoresis (2-DE) profile of rat hypothalamus proteins.
Results
As a first step, we established the best conditions for tissue collection and protein extraction, quantification and separation. The extraction buffer composition selected for proteome characterization of rat hypothalamus was urea 7 M, thiourea 2 M, CHAPS 4%, Triton X-100 0.5%, followed by a precipitation step with chloroform/methanol. Two-dimensional (2-D) gels of hypothalamic extracts from four-month-old rats were analyzed; the protein spots were digested and identified by using tandem mass spectrometry and database query using the protein search engine MASCOT. Eighty-six hypothalamic proteins were identified, the majority of which were classified as participating in metabolic processes, consistent with the finding of a large number of proteins with catalytic activity. Genes encoding proteins identified in this study have been related to obesity development.
Conclusion
The present results indicate that the 2-DE technique will be useful for nutritional studies focusing on hypothalamic proteins. The data presented herein will serve as a reference database for studies testing the effects of dietary manipulations on hypothalamic proteome. We trust that these experiments will lead to important knowledge on protein targets of nutritional variables potentially able to affect the complex central nervous system control of energy homeostasis.
Publisher
Springer Science and Business Media LLC
Subject
Molecular Biology,Biochemistry
Reference41 articles.
1. Flier JS: Obesity wars: molecular progress confronts an expanding epidemic. Cell 2004, 116: 337–350. 10.1016/S0092-8674(03)01081-X
2. Ribeiro EB, Telles MM, Oyama LM, Silveira VLF, Nascimento CMO: Hypothalamic serotonin in the control of food intake: physiological interactions and effect of obesity. In Focus on Nutrition Research. Edited by: Starks TP. Nova Science Publishers, New York; 2006:121–148.
3. López M, Tovar S, Vázquez MJ, Williams LM, Diéguez C: Peripheral tissue-brain interactions in the regulation of food intake. Proc Nutr Soc 2007, 66: 131–155. 10.1017/S0029665107005368
4. Ribeiro EB: Studying the central control of food intake and obesity in rats. Rev Nutr 2009,22(1):163–171. 10.1590/S1415-52732009000100015
5. Wang J, Li D, Dangott LJ, Wu G: Proteomics and its role in nutrition research. J Nutr 2006, 136: 1759–1762.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献