Ecosystem services in vineyard landscapes: a focus on aboveground carbon storage and accumulation

Author:

Williams J. N.ORCID,Morandé J. A.,Vaghti M. G.,Medellín-Azuara J,Viers J. H.

Abstract

Abstract Background Organic viticulture can generate a range of ecosystem services including supporting biodiversity, reducing the use of conventional pesticides and fertilizers, and mitigating greenhouse gas emissions through long-term carbon (C) storage. Here we focused on aboveground C storage rates and accumulation using a one-year increment analysis applied across different winegrape varietals and different-aged vineyard blocks. This produced a chronosequence of C storage rates over what is roughly the productive lifespan of most vines (aged 2–30 years). To our knowledge, this study provides the first estimate of C storage rates in the woody biomass of vines. Additionally, we assessed C storage in wildland buffers and adjacent oak-dominated habitats over a 9-year period. Results Carbon storage averaged 6.5 Mg/Ha in vines. We found the average annual increase in woody C storage was 43% by mass. Variation correlated most strongly with vine age, where the younger the vine, the greater the relative increase in annual C. Decreases in C increment rates with vine age were more than offset by the greater overall biomass of older vines, such that C on the landscape continued to increase over the life of the vines at 18.5% per year on average. Varietal did not significantly affect storage rates or total C stored. Carbon storage averaged 81.7 Mg/Ha in native perennial buffer vegetation; we found an 11% increase in mass over 9 years for oak woodlands and savannas. Conclusions Despite a decrease in the annual rate of C accumulation as vines age, we found a net increase in aboveground C in the woody biomass of vines. The results indicate the positive role that older vines play in on-farm (vineyard) C and overall aboveground accumulation rates. Additionally, we found that the conservation of native perennial vegetation as vineyard buffers and edge habitats contributes substantially to overall C stores. We recommend that future research consider longer time horizons for increment analysis, as this should improve the precision of C accumulation rate estimates, including in belowground (i.e., soil) reservoirs.

Funder

Fetzer Vineyards

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Management, Monitoring, Policy and Law,Global and Planetary Change

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3