Deep learning enables parallel camera with enhanced- resolution and computational zoom imaging

Author:

Liu Shu-Bin,Xie Bing-Kun,Yuan Rong-Ying,Zhang Meng-Xuan,Xu Jian-Cheng,Li Lei,Wang Qiong-Hua

Abstract

AbstractHigh performance imaging in parallel cameras is a worldwide challenge in computational optics studies. However, the existing solutions are suffering from a fundamental contradiction between the field of view (FOV), resolution and bandwidth, in which system speed and FOV decrease as system scale increases. Inspired by the compound eyes of mantis shrimp and zoom cameras, here we break these bottlenecks by proposing a deep learning-based parallel (DLBP) camera, with an 8-μrad instantaneous FOV and 4 × computational zoom at 30 frames per second. Using the DLBP camera, the snapshot of 30-MPs images is captured at 30 fps, leading to orders-of-magnitude reductions in system complexity and costs. Instead of directly capturing photography with large scale, our interactive-zoom platform operates to enhance resolution using deep learning. The proposed end-to-end model mainly consists of multiple convolution layers, attention layers and deconvolution layer, which preserves more detailed information that the image reconstructs in real time compared with the famous super-resolution methods, and it can be applied to any similar system without any modification. Benefiting from computational zoom without any additional drive and optical component, the DLBP camera provides unprecedented-competitive advantages in improving zoom response time (~ 100 ×) over the comparison systems. Herein, with the experimental system described in this work, the DLBP camera provides a novel strategy to solve the inherent contradiction among FOV, resolution and bandwidth.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electrical and Electronic Engineering,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3