Surmounting photon limits and motion artifacts for biological dynamics imaging via dual-perspective self-supervised learning

Author:

Shen Binglin,Luo Chenggui,Pang Wen,Jiang Yajing,Wu Wenbo,Hu Rui,Qu Junle,Gu Bobo,Liu LiweiORCID

Abstract

AbstractVisualizing rapid biological dynamics like neuronal signaling and microvascular flow is crucial yet challenging due to photon noise and motion artifacts. Here we present a deep learning framework for enhancing the spatiotemporal relations of optical microscopy data. Our approach leverages correlations of mirrored perspectives from conjugated scan paths, training a model to suppress noise and motion blur by restoring degraded spatial features. Quantitative validation on vibrational calcium imaging validates significant gains in spatiotemporal correlation (2.2×), signal-to-noise ratio (9–12 dB), structural similarity (6.6×), and motion tolerance compared to raw data. We further apply the framework to diverse in vivo experiments from mouse cerebral hemodynamics to zebrafish cardiac dynamics. This approach enables the clear visualization of the rapid nutrient flow (30 mm/s) in microcirculation and the systolic and diastolic processes of heartbeat (2.7 cycle/s), as well as cellular and vascular structure in deep cortex. Unlike techniques relying on temporal correlations, learning inherent spatial priors avoids motion-induced artifacts. This self-supervised strategy flexibly enhances live microscopy under photon-limited and motion-prone regimes.

Funder

Shenzhen Key Projects

Shenzhen International Cooperation Project

National Natural Science Foundation of China

Shenzhen Medical Research Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3