Information Metamaterials: bridging the physical world and digital world

Author:

Ma Qian,Cui Tie Jun

Abstract

AbstractOver the past 5 years, digital coding and programmable metamaterials have been developed rapidly since their first exhibition in 2014. The iconic feature of the digital coding metamaterial is using digital codes like “0” and “1” to represent the distinct electromagnetic (EM) responses. This seemingly trivial progress has successfully reform the design theory from the effective medium to coding patterns, bridging the physical world and digital information world. More interestingly, beyond the simple coding on the parameters or patterns, the digital coding metamaterials are more intend to introduce the concept of direct interactions and operations of digital information within EM fields, to realize information processing, transmission or recognition. To accurately exhibit the informational specialties, we classify the coding metamaterials, digital metamaterials and programmable metamaterials, as well as other information-operating metamaterials, as information metamaterials. In this review article, we firstly introduce the digital coding concept, working mechanism, and related design methods. Then, three important theories including the scattering pattern calculation, convolution operation, and entropy of digital coding metamaterials, are discussed in details. Finally we introduce several system-level works based on the information metamaterials, such as the new-architecture wireless communication systems and reprogrammable imaging systems, to show the powerful manipulation capabilities of information metamaterials. As the next generation of information metamaterials, two proof-of-concept smart metamaterials and their advanced architectures are discussed. In the summary, the development track of information metamaterials and future trends are presented.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

111 Project

Fund for International Cooperation and Exchange of National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3