Design and research of heat dissipation system of electric vehicle lithium-ion battery pack based on artificial intelligence optimization algorithm

Author:

Cheng Qingwei,Zhao Henan

Abstract

AbstractThis research focuses on the design of heat dissipation system for lithium-ion battery packs of electric vehicles, and adopts artificial intelligence optimization algorithm to improve the heat dissipation efficiency of the system. By integrating genetic algorithms and particle swarm optimization, the research goal is to optimize key design parameters of the cooling system to improve temperature control and extend battery life. In the process of algorithm implementation, genetic algorithm improves the diversity of population through crossover and mutation operations, thus enhancing the global search ability. Particle swarm optimization (PSO) improves local search accuracy and convergence speed by dynamically adjusting inertia weight and learning factor. The effects of different design schemes on heat dissipation performance were systematically evaluated by using computational fluid dynamics (CFD) software. The experimental results show that the efficiency of the cooling system is significantly improved after the application of the optimization algorithm, especially in the aspects of temperature distribution uniformity and maximum temperature reduction. The optimization algorithm also successfully shortens the thermal response time of the system and improves the adaptability and stability of the system under different working conditions. The computational complexity and execution time of these algorithms are also analyzed, which proves the efficiency and feasibility of these algorithms in practical applications. This study demonstrates the practicability and effectiveness of artificial intelligence optimization algorithm in the design of heat dissipation system of lithium-ion battery pack for electric vehicles, and provides valuable reference and practical guidance for the progress of heat dissipation technology of electric vehicles in the future.

Funder

Guangdong Province Youth Innovation Talent Project for Ordinary Universities

Guangzhou City University of Technology Youth Research Fund Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3