WPO: A Whale Particle Optimization Algorithm

Author:

Huang Ko-Wei,Wu Ze-Xue,Jiang Chang-Long,Huang Zih-Hao,Lee Shih-HsiungORCID

Abstract

AbstractMetaheuristic algorithms are novel optimization algorithms often inspired by nature. In recent years, scholars have proposed various metaheuristic algorithms, such as the genetic algorithm (GA), artificial bee colony, particle swarm optimization (PSO), crow search algorithm, and whale optimization algorithm (WOA), to solve optimization problems. Among these, PSO is the most commonly used. However, different algorithms have different limitations. For example, PSO is prone to premature convergence and falls into a local optimum, whereas GA coding is difficult and uncertain. Therefore, an algorithm that can increase the computing power and particle diversity can address the limitations of existing algorithms. Therefore, this paper proposes a hybrid algorithm, called whale particle optimization (WPO), that combines the advantages of the WOA and PSO to increase particle diversity and can jump out of the local optimum. The performance of the WPO algorithm was evaluated using four optimization problems: function evaluation, image clustering, permutation flow shop scheduling, and data clustering. The test data were selected from real-life situations. The results demonstrate that the proposed algorithm competes well against existing algorithms.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

Reference50 articles.

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms. The MIT Press, Cambridge, Massachusetts (2009)

2. Glover, F.W., Kochenberger, G.A.: Handbook of Metaheuristics. Springer Science & Business Media, New York (2006)

3. Lee, R.C.T., Tseng, S.S., Chang, R.C., Tsai, Y.T.: Introduction to the Design and Analysis of Algorithms. Tata McGraw Hill, McGraw-Hill College (1977)

4. Kennedy, J.: Swarm Intelligence. In: Zomaya, A.Y. (ed.) Handbook of nature-inspired and innovative computing: integrating classical models with emerging technologies, pp. 187–219. Springer, US, Boston, MA (2006). https://doi.org/10.1007/0-387-27705-6_6

5. van der Merwe, D.W., Engelbrecht, A.P.: Data clustering using particle swarm optimization. In: The 2003 Congress on Evolutionary Computation, 2003. CEC ’03. Vol. 1, pp. 215–220 (2003). https://doi.org/10.1109/CEC.2003.1299577

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3