State-based load profile generation for modeling energetic flexibility

Author:

Förderer Kevin,Schmeck Hartmut

Abstract

AbstractCommunicating the energetic flexibility of distributed energy resources (DERs) is a key requirement for enabling explicit and targeted requests to steer their behavior. The approach presented in this paper allows the generation of load profiles that are likely to be feasible, which means the load profiles can be reproduced by the respective DERs. It also allows to conduct a targeted search for specific load profiles. Aside from load profiles for individual DERs, load profiles for aggregates of multiple DERs can be generated. We evaluate the approach by training and testing artificial neural networks (ANNs) for three configurations of DERs. Even for aggregates of multiple DERs, ratios of feasible load profiles to the total number of generated load profiles of over 99% can be achieved. The trained ANNs act as surrogate models for the represented DERs. Using these models, a demand side manager is able to determine beneficial load profiles. The resulting load profiles can then be used as target schedules which the respective DERs must follow.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Energy Engineering and Power Technology,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3