Ant colony optimization for feasible scheduling of step-controlled smart grid generation

Author:

Bremer JörgORCID,Lehnhoff Sebastian

Abstract

AbstractThe electrical energy grid is currently experiencing a paradigm shift in control. In the future, small and decentralized energy resources will have to responsibly perform control tasks like frequency or voltage control. For many use cases, scheduling of energy resources is necessary. In the multi-dimensional discrete case–e.g.,  for step-controlled devices–this is an NP-hard problem if some sort of intermediate energy buffer is involved. Systematically constructing feasible solutions during optimization, hence, becomes a difficult task. We prove the NP-hardness for the example of co-generation plants and demonstrate the multi-modality of systematically designing feasible solutions. For the example of day-ahead scheduling, a model-integrated solution based on ant colony optimization has already been proposed. By using a simulation model for deciding on feasible branches, artificial ants construct the feasible search graphs on demand. Thus, the exponential growth of the graph in this combinatorial problem is avoided. We present in this extended work additional insight into the complexity and structure of the underlying the feasibility landscape and additional simulation results.

Funder

Carl von Ossietzky Universität Oldenburg

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3