Comparative study of algorithms for optimized control of industrial energy supply systems

Author:

Kohne Thomas,Ranzau Heiko,Panten Niklas,Weigold Matthias

Abstract

Abstract Both rising and more volatile energy prices are strong incentives for manufacturing companies to become more energy-efficient and flexible. A promising approach is the intelligent control of Industrial Energy Supply Systems (IESS), which provide various energy services to industrial production facilities and machines. Due to the high complexity of such systems widespread conventional control approaches often lead to suboptimal operating behavior and limited flexibility. Rising digitization in industrial production sites offers the opportunity to implement new advanced control algorithms e. g. based on Mixed Integer Linear Programming (MILP) or Deep Reinforcement Learning (DRL) to optimize the operational strategies of IESS.This paper presents a comparative study of different controllers for optimized operation strategies. For this purpose, a framework is used that allows for a standardized comparison of rule-, model- and data-based controllers by connecting them to dynamic simulation models of IESS of varying complexity. The results indicate that controllers based on DRL and MILP have a huge potential to reduce energy-related cost of up to 50% for less complex and around 6% for more complex systems. In some cases however, both algorithms still show unfavorable operating behavior in terms of non-direct costs such as temperature and switching restrictions, depending on the complexity and general conditions of the systems.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Energy Engineering and Power Technology,Information Systems

Reference53 articles.

1. Abele, E, Bauerdick CJH, Strobel N, Panten N (2016) ETA Learning Factory: A Holistic Concept for Teaching Energy Efficiency in Production.

2. Abele, E, Schneider J, Beck M, Andreas M (2018) ETA - die Modell-Fabrik, Energieeffizienz weiter gedacht. https://tubiblio.ulb.tu-darmstadt.de/105750/ .

3. Agora Energiewende (2019) Die Energiewende im Stromsektor: Stand der Dinge 2018: Rückblick auf die wesentlichen Entwicklungen sowie Ausblick auf 2019.

4. Agora Energiewende (2020) Die Energiewende im Stromsektor: Stand der Dinge 2019: Rückblick auf die wesentlichen Entwicklungen sowie Ausblick auf 2020.

5. Andersen, FM, Jensen SG, Larsen HV, Meibom P, Togeby M (2006) Analyses of Demand Response in Denmark.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3