The Potential of Control Models Based on Reinforcement Learning in the Operating of Solar Thermal Cooling Systems

Author:

Diaz Juan J.ORCID,Fernández José A.ORCID

Abstract

The objective of this research work was to investigate the potential of control models based on reinforcement learning in the optimization of solar thermal cooling systems (STCS) operation through a case study. In this, the performance of the installation working with a traditional predictive control approach and with a reinforcement learning (RL)-based control approach was analyzed and compared using a specific realistic simulation tool. In order to achieve the proposed objective, a control system module based on the reinforcement learning approach with the capacity for interacting with the aforementioned realistic simulation tool was developed in Python. For the studied period and the STCS operating with a control system based on RL, the following was observed: a 35% reduction in consumption of auxiliary energy, a 17% reduction in the electrical consumption of the pump that feeds the absorption machine and more precise control in the generation of cooling energy regarding the installation working under a predictive control approach. Through the obtained results, the advantages and potential of control models based on RL for the controlling and regulation of solar thermal cooling systems were verified.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference63 articles.

1. Control Strategies and Algorithms for Obtaining Energy Flexibility in Buildings Energy in Buildings and Communities Programme Annex 67 Energy Flexible Buildings;Santos,2019

2. HVAC control methods—A review;Belic;Proceedings of the 2015 19th International Conference on System Theory, Control and Computing (ICSTCC) 2015,2015

3. Control Techniques in Heating, Ventilating and Air Conditioning (HVAC) Systems

4. Review of Control Techniques for HVAC Systems—Nonlinearity Approaches Based on Fuzzy Cognitive Maps

5. Exergy analysis of a solar heating and cooling system that uses phase change materials;Maldonado;PCMSOL Project. Acta Nova,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3