Clinical and radiomics feature-based outcome analysis in lumbar disc herniation surgery

Author:

Saravi Babak,Zink Alisia,Ülkümen Sara,Couillard-Despres Sebastien,Wollborn Jakob,Lang Gernot,Hassel Frank

Abstract

Abstract Background Low back pain is a widely prevalent symptom and the foremost cause of disability on a global scale. Although various degenerative imaging findings observed on magnetic resonance imaging (MRI) have been linked to low back pain and disc herniation, none of them can be considered pathognomonic for this condition, given the high prevalence of abnormal findings in asymptomatic individuals. Nevertheless, there is a lack of knowledge regarding whether radiomics features in MRI images combined with clinical features can be useful for prediction modeling of treatment success. The objective of this study was to explore the potential of radiomics feature analysis combined with clinical features and artificial intelligence-based techniques (machine learning/deep learning) in identifying MRI predictors for the prediction of outcomes after lumbar disc herniation surgery. Methods We included n = 172 patients who underwent discectomy due to disc herniation with preoperative T2-weighted MRI examinations. Extracted clinical features included sex, age, alcohol and nicotine consumption, insurance type, hospital length of stay (LOS), complications, operation time, ASA score, preoperative CRP, surgical technique (microsurgical versus full-endoscopic), and information regarding the experience of the performing surgeon (years of experience with the surgical technique and the number of surgeries performed at the time of surgery). The present study employed a semiautomatic region-growing volumetric segmentation algorithm to segment herniated discs. In addition, 3D-radiomics features, which characterize phenotypic differences based on intensity, shape, and texture, were extracted from the computed magnetic resonance imaging (MRI) images. Selected features identified by feature importance analyses were utilized for both machine learning and deep learning models (n = 17 models). Results The mean accuracy over all models for training and testing in the combined feature set was 93.31 ± 4.96 and 88.17 ± 2.58. The mean accuracy for training and testing in the clinical feature set was 91.28 ± 4.56 and 87.69 ± 3.62. Conclusions Our results suggest a minimal but detectable improvement in predictive tasks when radiomics features are included. However, the extent of this advantage should be considered with caution, emphasizing the potential of exploring multimodal data inputs in future predictive modeling.

Funder

Universitätsklinikum Freiburg

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3